LODEstruct - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LODEstruct

data structure to represent an ODE

 

Description

Examples

Description

• 

LODEstruct is a data structure to represent an ordinary differential equation. It is created by Slode[DEdetermine].

• 

The entries of an LODEstruct are a set of equations, representing the differential equation, and a set of function names, representing the dependent variables.

• 

The data structure has an attribute table with the following entries:

– 

L - the differential operator in diff notation

– 

rhs - the right hand side of the equation

– 

fun - the name of the dependent variable, for example y

– 

var - the name of the independent variable, for example x

– 

linear - true if L is a linear differential operator and false otherwise

– 

ord - the order of L

– 

coeffs - an Array of coefficients of L

– 

polycfs - true if all coefficients are polynomial and false otherwise

– 

d_max   - the maximum degree of polynomial coefficients

• 

If the right hand side is a formal power series in the form Bx+n=NHnPnx where Bx is a polynomial in x, Pnx is either xan or 1xn, a is the expansion point, and Hn is an expression in n, then it is represented as a RHSstruct data structure. The entries of an RHSstruct are the right hand side and the independent variable x. In addition, the data structure has an attribute table with following entries:

– 

mvar - the name of the independent variable, x

– 

index - the name of the summation index, n

– 

point - the expansion point a, possibly

– 

M - a nonnegative integer such that series coefficients are equal Hn for all n>M; it satisfies M=maxN1,degreeBx,x

– 

initial - an Array of M initial series coefficients

– 

H - the expression Hn

– 

P_n - either xan or 1xn

Examples

withSlode:

odediffyx,xx1yx=0

odeⅆⅆxyxx1yx=0

(1)

DEdetermineode,yx

LODEstructⅆⅆxyxx1yx=0,yx

(2)

attributes

ode1diffyx,xx1yx=x3+2Sumxnn3,n=4..

ode1ⅆⅆxyxx1yx=x3+2n=4xnn3

(3)

DEdetermineode1,yx

LODEstructⅆⅆxyxx1yx=x3+2n=4xnn3,yx

(4)

attributes

attributesrhs

See Also

Slode

Slode[DEdetermine]