hypergeom_formal_sol - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Slode

  

hypergeom_formal_sol

  

formal solutions with hypergeometric series coefficients for a linear ODE

 

Calling Sequence

Parameters

Description

Options

Examples

Calling Sequence

hypergeom_formal_sol(ode, var, opts)

hypergeom_formal_sol(LODEstr, opts)

Parameters

ode

-

homogeneous linear ODE with polynomial coefficients

var

-

dependent variable, for example y(x)

opts

-

optional arguments of the form keyword=value

LODEstr

-

LODEstruct data-structure

Description

• 

The hypergeom_formal_sol command returns formal solutions with hypergeometric series coefficients for the given homogeneous linear ordinary differential equation with polynomial coefficients.

• 

If ode is an expression, then it is equated to zero.

• 

The command returns an error message if the differential equation ode does not satisfy the following conditions.

– 

ode must be homogeneous and linear in var

– 

The coefficients of ode must be polynomial in the independent variable of var, for example, x, over the rational number field which can be extended by one or more parameters.

• 

A homogeneous linear ordinary differential equation with coefficients that are polynomials in x has a basis of formal solutions (see DEtools[formal_sol]). A formal solution contains a finite number of power series n=0vnTn where T is a parameter and the sequence vn satisfies a linear recurrence (homogeneous or inhomogeneous).

• 

This command selects solutions that contain series where vn+1=pnvn for all sufficiently large n, where pn is a rational function.

• 

This command determines an integer N0 such that vn can be represented in the form of hypergeometric term (see SumTools[Hypergeometric],LREtools):

vn=vNk=Nn1pk ( * )

  

for all nN.

Options

• 

'parameter'=T

  

Specifies the name T that is used to denote λx1r where λ is a constant and r is called the ramification index. If this option is given, then the command expresses the formal solutions in terms of T and returns a list of lists each of which is of the form [formal solution, relation between T and x]. Otherwise, it returns the formal solutions in terms of x1r.

• 

x=a or 'point'=a

  

Specifies the expansion point a. It can be an algebraic number, depending rationally on some parameters, or .

  

The default is a=0.

• 

'free'=C

  

Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name  _C. Note that the number of free variables may be less than the order of the given equation.

• 

'indices'=[n,k]

  

Specifies names for dummy variables. The default values are the global names _n and _k. The name n is used as the summation index in the power series. The name k is used as the product index in ( * ).

• 

'outputHGT'=name

  

Specifies the form of representation of hypergeometric terms.  The default value is 'active'.

– 

'inert' - the hypergeometric term ( * ) is represented by an inert product, except for k=Nn11, which is simplified to 1.

– 

'rcf1' or 'rcf2' - the hypergeometric term is represented in the first or second minimal representation, respectively (see ConjugateRTerm).

– 

'active' - the hypergeometric term is represented by non-inert products which, if possible, are computed (see product).

Examples

withSlode:

ode3xyx+4+4xxdiffyx,x+33xx2diffyx,x,x

ode3xyx+4+4xxⅆⅆxyx+33xx2ⅆ2ⅆx2yx

(1)

hypergeom_formal_solode,yx

9_C0Γ23_n=0−1_nΓ_n76856Γ_n76+856x_nΓ_n+1Γ_n434Γ85676Γ85676+56x73_C1π3_n=0−1_nΓ_n+76856Γ_n+76+856x_nΓ_n+103Γ_n+181Γ856+76Γ856+76Γ23

(2)

hypergeom_formal_solode,yx,parameter=t,outputHGT=inert

_C0_n=0−1_nt_n_k=0_n13_k2_k43_k27_k3,x=t,t73_C1_n=0−1_nt_n_k=0_n13_k2+13_k+103_k2+7_k3,x=t

(3)

See Also

DEtools[formal_sol]

LODEstruct

Slode

Slode[dAlembertian_formal_sol]

Slode[hypergeom_series_sol]

Slode[mhypergeom_formal_sol]

SumTools[Hypergeometric]