Statistics
CumulativeDistributionFunction
compute the cumulative distribution function
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
CumulativeDistributionFunction(X, t, options)
CDF(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equation(s) of the form numeric=value or inert=value; specifies options for computing the cumulative distribution function of a random variable
The CumulativeDistributionFunction function computes the cumulative distribution function of the specified random variable at the specified point.
The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
The inverse function of the CDF is the Quantile.
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the cumulative distribution function is computed using exact arithmetic. To compute the cumulative distribution function numerically, specify the numeric or numeric=true option.
inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the CDF. By specifying inert or inert=true, Maple will return these unevaluated.
with⁡Statistics:
Compute the cumulative distribution function of the beta distribution with parameters p and q.
CumulativeDistributionFunction⁡Β⁡p,q,t
0t<0tp⁢hypergeom⁡p,1−q,1+p,tΒ⁡p,q⁢pt<11otherwise
Use numeric parameters.
CumulativeDistributionFunction⁡Β⁡3,5,12
35⁢hypergeom⁡−4,3,4,128
CumulativeDistributionFunction⁡Β⁡3,5,12,numeric
0.773437500000000
Define new distribution.
T≔Distribution⁡`=`⁡PDF,t↦1π⋅t2+1:
X≔RandomVariable⁡T:
CDF⁡X,0
12
CDF⁡X,0,numeric
0.4999999999
CDF⁡X,u
π+2⁢arctan⁡u2⁢π
Use the inert option.
CDF⁡X,0,inert=true
∫−∞01π⁢_t2+1ⅆ_t
CDF⁡X,t,inert=true
∫−∞t1π⁢_t02+1ⅆ_t0
N≔RandomVariable⁡Normal⁡0,1:
CDF⁡N,t,inert=true
∫−∞t2⁢ⅇ−_t1222⁢πⅆ_t1
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[Quantile]
Statistics[RandomVariables]
Download Help Document