Statistics[Distributions]
Laplace
Laplace distribution
Calling Sequence
Parameters
Description
Examples
References
Laplace(a, b)
LaplaceDistribution(a, b)
a
-
location parameter
b
scale parameter
The Laplace distribution is a continuous probability distribution with probability density function given by:
f⁡t=ⅇ−t−ab2⁢b
subject to the following conditions:
a::real,0<b
The Laplace variate with location parameter 0 and scale parameter b is related to two independent Exponential variates E1 and E2 by Laplace(0,b) ~ E1 - E2.
Note that the Laplace command is inert and should be used in combination with the RandomVariable command.
with⁡Statistics:
X≔RandomVariable⁡Laplace⁡a,b:
PDF⁡X,u
ⅇ−−u+ab2⁢b
PDF⁡X,0.5
0.5000000000⁢ⅇ−1.⁢−0.5+abb
Mean⁡X
Variance⁡X
2⁢b2
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics
Statistics[RandomVariable]
Download Help Document