Statistics[Distributions]
NonCentralBeta
noncentral beta distribution
Calling Sequence
Parameters
Description
Notes
Examples
References
NonCentralBeta(nu, omega, delta)
NonCentralBetaDistribution(nu, omega, delta)
nu
-
first shape parameter
omega
second shape parameter
delta
noncentrality parameter
The noncentral beta distribution is a continuous probability distribution with probability density function given by:
f⁡t=0t<0ⅇ−δ2⁢t−1+ν⁢1−tω−1⁢∑k=0∞⁡δ⁢t2kk!⁢Β⁡ω,ν+kt≤10otherwise
subject to the following conditions:
0<ν,0<ω,0≤δ
The NonCentralBeta variate with noncentrality parameter delta=0 and shape parameters nu and omega is equivalent to the Beta variate with shape parameters nu and omega.
Note that the NonCentralBeta command is inert and should be used in combination with the RandomVariable command.
The Quantile and CDF functions applied to a noncentral beta distribution use a sequence of iterations in order to converge on the desired output point. The maximum number of iterations to perform is equal to 100 by default, but this value can be changed by setting the environment variable _EnvStatisticsIterations to the desired number of iterations.
with⁡Statistics:
X≔RandomVariable⁡NonCentralBeta⁡5,7,9:
PDF⁡X,u
0u<03⁢ⅇ−92⁢u4⁢1−u6⁢770+17714710240⁢u7+15155915120⁢u6+505197256⁢u5+841995128⁢u4+935558⁢u3+436594⁢u2+4851⁢u⁢ⅇ9⁢u2u≤10otherwise
PDF⁡X,0.5
2.428158722
Mean⁡X
21403805033486784401−14129561600⁢ⅇ−923486784401
Variance⁡X
−1539933930549285216412157665459056928801−199644511008194560000⁢ⅇ−912157665459056928801+1407109365778350080000⁢ⅇ−9212157665459056928801
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Hormal L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics
Statistics[RandomVariable]
Download Help Document