Statistics[Distributions]
Rayleigh
Rayleigh distribution
Calling Sequence
Parameters
Description
Examples
References
Rayleigh(b)
RayleighDistribution(b)
b
-
scale parameter
The Rayleigh distribution is a continuous probability distribution with probability density function given by:
f⁡t=0t<0t⁢ⅇ−t22⁢b2b2otherwise
subject to the following conditions:
0<b
The Rayleigh variate with scale parameter b is equivalent to the Weibull variate with scale parameter b and shape parameter 2: Rayleigh(b) ~ Weibull(b,2).
The Rayleigh variate with scale parameter 1 is equivalent to a ChiSquare variate with degrees of freedom 2: Rayleigh(1) ~ ChiSquare(2).
Note that the Rayleigh command is inert and should be used in combination with the RandomVariable command.
with⁡Statistics:
X≔RandomVariable⁡Rayleigh⁡b:
PDF⁡X,u
0u<0u⁢ⅇ−u22⁢b2b2otherwise
PDF⁡X,0.5
0.5⁢ⅇ−0.1250000000b2b2
Mean⁡X
b⁢2⁢π2
Variance⁡X
2−π2⁢b2
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics
Statistics[RandomVariable]
Download Help Document