HarmonicMean - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

HarmonicMean

  

compute the harmonic mean

 

Calling Sequence

Parameters

Description

Computation

Data Set Options

Random Variable Options

Examples

References

Compatibility

Calling Sequence

HarmonicMean(A, ds_options)

HarmonicMean(M, ds_options)

HarmonicMean(X, rv_options)

Parameters

A

-

data sample

M

-

Matrix data set

X

-

algebraic; random variable or distribution

ds_options

-

(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the mean of a data set

rv_options

-

(optional) equation of the form numeric=value; specifies options for computing the mean of a random variable

Description

• 

The HarmonicMean function computes the harmonic mean of the specified random variable or data set.

• 

The first parameter can be a data set (given as e.g. a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

All computations involving data are performed in floating-point; therefore, all data provided must have type/realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Data Set Options

  

The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

• 

ignore=truefalse -- This option controls how missing data is handled by the HarmonicMean command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the HarmonicMean command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

• 

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.

Random Variable Options

  

The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the mean is computed using exact arithmetic. To compute the mean numerically, specify the numeric or numeric = true option.

Examples

withStatistics:

Compute the mean of the beta distribution with parameters p and q.

HarmonicMeanΒp,q

Βp,qΓp+q1ΓqΓp1

(1)

Use numeric parameters.

HarmonicMeanUniform3,5

1ln32+ln52

(2)

HarmonicMeanUniform3,5,numeric

3.915230378

(3)

Generate a random sample of size 1000 drawn from the above distribution and compute the sample mean.

ASampleUniform3,5,103:

HarmonicMeanA

3.89322017937554

(4)

Create a beta-distributed random variable Y and compute the mean of 1Y+2.

YRandomVariableΒ5,2:

HarmonicMean1Y+2

719

(5)

HarmonicMean1Y+2,numeric

0.3684210527

(6)

Verify this using simulation.

CSample1Y+2,103:

HarmonicMeanC

0.367777728180973

(7)

Compute the mean of a weighted data set.

Vseqi,i=57..77,undefined:

W2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:

Digits40

Digits40

(8)

HarmonicMeanV,weights=W

Floatundefined

(9)

HarmonicMeanV,weights=W,ignore=true

66.92176161684632539311650421092512741624

(10)

Digits10:

Consider the following Matrix data set.

MMatrix3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007

M31130114694415271273683907884642878964844995128007

(11)

We compute the harmonic mean of each of the columns.

HarmonicMeanM

3.000000000000001044.63785139449108576.132666248

(12)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

• 

The M parameter was introduced in Maple 16.

• 

For more information on Maple 16 changes, see Updates in Maple 16.

See Also

Statistics

Statistics[Computation]

Statistics[DescriptiveStatistics]

Statistics[Distributions]

Statistics[ExpectedValue]

Statistics[RandomVariables]

Statistics[StandardError]