FailureRate - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

HazardRate

  

compute the hazard rate

 

Calling Sequence

Parameters

Description

Computation

Options

Examples

References

Calling Sequence

HazardRate(X, t, options)

FailureRate(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equation of the form numeric=value; specifies options for computing the hazard rate of a random variable

Description

• 

The HazardRate rate computes the hazard (failure) rate of the specified random variable at the specified point.

• 

The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

  

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the hazard rate is computed using exact arithmetic. To compute the hazard rate numerically, specify the numeric or numeric = true option.

Examples

withStatistics:

Compute the hazard rate of the beta distribution with parameters p and q.

HazardRateΒp,q,t

0t<0tp11tq1Βp&comma;qt<10otherwise10t<0tphypergeomp&comma;1q&comma;1+p&comma;tΒp&comma;qpt<11otherwise

(1)

Use numeric parameters.

HazardRateΒ3&comma;5&comma;12

10564135hypergeom−4&comma;3&comma;4&comma;128

(2)

HazardRateΒ3&comma;5&comma;12&comma;numeric

7.241379317

(3)

Define new distribution.

TDistribution`=`PDF&comma;t1πt2+1&colon;

XRandomVariableT&colon;

CDFX&comma;t

π+2arctant2π

(4)

FailureRateX&comma;t

1πt2+11π+2arctant2π

(5)

Another distribution

UDistribution`=`CDF&comma;tFt&comma;`=`PDF&comma;tft&colon;

YRandomVariableU&colon;

CDFY&comma;t

Ft

(6)

FailureRateY&comma;t

ft1Ft

(7)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Computation]

Statistics[Distributions]

Statistics[RandomVariables]