Statistics
InterquartileRange
compute the interquartile range
Calling Sequence
Parameters
Description
Computation
Data Set Options
Random Variable Options
Examples
References
Compatibility
InterquartileRange(A, ds_options)
InterquartileRange(M, ds_options)
InterquartileRange(X, rv_options)
A
-
data sample
M
Matrix data set
X
algebraic; random variable or distribution
ds_options
(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the interquartile range of a data set
rv_options
(optional) equation of the form numeric=value; specifies options for computing the interquartile range of a random variable
The InterquartileRange function computes the interquartile range of the specified random variable or data set.
The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
ignore=truefalse -- This option controls how missing data is handled by the InterquartileRange command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the InterquartileRange command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.
The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the interquartile range is computed symbolically. To compute the interquartile range numerically, specify the numeric or numeric = true option.
with⁡Statistics:
Compute the average absolute range from the interquartile of the Rayleigh distribution with parameter 3.
InterquartileRange⁡Rayleigh⁡3
36⁢ln⁡2−−18⁢ln⁡34
InterquartileRange⁡Rayleigh⁡3,numeric
2.71974481762339
Generate a random sample of size 100000 drawn from the above distribution and compute the sample interquartile range.
A≔Sample⁡Rayleigh⁡3,105:
InterquartileRange⁡A
2.72287155374363
Compute the standard error of the interquartile range for the normal distribution with parameters 5 and 2.
X≔RandomVariable⁡Normal⁡5,2:
B≔Sample⁡X,106:
InterquartileRange⁡X,StandardError106⁡InterquartileRange,X
5⁢2+4⁢RootOf⁡2⁢erf⁡_Z−1⁢22−5⁢2+4⁢RootOf⁡2⁢erf⁡_Z+1⁢22,6⁢πⅇ−5⁢2+4⁢RootOf⁡2⁢erf⁡_Z−1⁢22−5282+6⁢πⅇ−5⁢2+4⁢RootOf⁡2⁢erf⁡_Z+1⁢22−5282−4⁢πⅇ−5⁢2+4⁢RootOf⁡2⁢erf⁡_Z−1⁢22−528⁢ⅇ−5⁢2+4⁢RootOf⁡2⁢erf⁡_Z+1⁢22−5282000
InterquartileRange⁡X,numeric,StandardError106⁡InterquartileRange,X,numeric
2.69795900078510,0.00314686508165807
InterquartileRange⁡B,StandardError⁡InterquartileRange,B
2.70027487505199,0.00314822096661433693
Compute the interquartile range of a weighted data set.
V≔seq⁡i,i=57..77,undefined:
W≔2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:
InterquartileRange⁡V,weights=W
3.54768681570400
InterquartileRange⁡V,weights=W,ignore=true
3.54776903409704
Consider the following Matrix data set.
M≔Matrix⁡3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007
M≔31130114694415271273683907884642878964844995128007
We compute the interquartile range of each of the columns.
InterquartileRange⁡M
1.33333333333333365.00000000000033770.3333333333
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The M parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
See Also
Statistics[Computation]
Statistics[DescriptiveStatistics]
Statistics[Distributions]
Statistics[ExpectedValue]
Statistics[RandomVariables]
Statistics[StandardError]
Download Help Document