Median - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

Median

  

compute the median

 

Calling Sequence

Parameters

Description

Computation

Data Set Options

Random Variable Options

Examples

References

Compatibility

Calling Sequence

Median(A, ds_options)

Median(X, rv_options)

Parameters

A

-

data set or Matrix data set

X

-

algebraic; random variable or distribution

ds_options

-

(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the median of a data set

rv_options

-

(optional) equation of the form numeric=value; specifies options for computing the median of a random variable

Description

• 

The Median function computes the median of the specified random variable or data set.

• 

The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

• 

In the first calling sequence, if A has an even number of data points, then the median is the mean of the two middle data points.

• 

In the second calling sequence, if X is a discrete random variable, then the median is defined as the first point t such that the CDF at t is greater than or equal to 12.

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

All computations involving data are performed in floating-point; therefore, all data provided must have type/realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Data Set Options

  

The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

• 

ignore=truefalse -- This option controls how missing data is handled by the Median command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Median command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

• 

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.

Random Variable Options

  

The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the median is computed using exact arithmetic. To compute the median numerically, specify the numeric or numeric = true option.

Examples

withStatistics:

Compute the median of the Weibull distribution with parameters p and q.

MedianWeibullp,q

pln21q

(1)

Use numeric parameters.

MedianWeibull3,5

3ln215

(2)

MedianWeibull3,5,numeric

2.787958770

(3)

Generate a random sample of size 100000 drawn from the above distribution and compute the sample median.

ASampleWeibull3,5,105:

MedianA

2.78854409375312

(4)

Compute the standard error of the sample median for the normal distribution with parameters 5 and 2.

XNormal5,2

XNormal5,2

(5)

BSampleX,106:

MedianX,numeric,StandardError106Median,X,numeric

5.,0.00250662827550447

(6)

MedianB

4.99678420082019

(7)

Compute the median of a sum of two random variables.

XRandomVariableNormal5,2:

YRandomVariableNormal10,1:

MedianX+Y

15

(8)

Verify this using simulation.

CSampleX+Y,105:

MedianC

15.0048009574154

(9)

Compute the median of a weighted data set.

Vseqi,i=57..77,undefined:

W2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:

MedianV,weights=W

67.

(10)

MedianV,weights=W,ignore=true

67.

(11)

Consider the following Matrix data set.

MMatrix3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007

M31130114694415271273683907884642878964844995128007

(12)

We compute the median of each of the columns.

MedianM

3.995.114694.

(13)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

• 

The A parameter was updated in Maple 16.

See Also

Statistics

Statistics[Computation]

Statistics[DescriptiveStatistics]

Statistics[Distributions]

Statistics[ExpectedValue]

Statistics[RandomVariables]

Statistics[StandardError]