Statistics
MillsRatio
compute the Mills ratio
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
MillsRatio(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equation of the form numeric=value; specifies options for computing the Mills ratio of a random variable
The MillsRatio ratio computes the Mills ratio of the specified random variable at the specified point.
The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the Mills ratio is computed using exact arithmetic. To compute the Mills ratio numerically, specify the numeric or numeric = true option.
with⁡Statistics:
Compute the Mills ratio of the beta distribution with parameters p and q.
MillsRatio⁡Β⁡p,q,t
1−0t<0tp⁢hypergeom⁡p,1−q,1+p,tΒ⁡p,q⁢pt<11otherwise0t<0tp−1⁢1−tq−1Β⁡p,qt<10otherwise
Use numeric parameters.
MillsRatio⁡Β⁡3,5,12
64105−8⁢hypergeom⁡−4,3,4,123
MillsRatio⁡Β⁡3,5,12,numeric
0.138095238095238
Define new distribution.
T≔Distribution⁡`=`⁡PDF,t↦1π⋅t2+1:
X≔RandomVariable⁡T:
CDF⁡X,t
π+2⁢arctan⁡t2⁢π
MillsRatio⁡X,t
1−π+2⁢arctan⁡t2⁢π⁢π⁢t2+1
Another distribution
U≔Distribution⁡`=`⁡CDF,t↦F⁡t,`=`⁡PDF,t↦f⁡t:
Y≔RandomVariable⁡U:
CDF⁡Y,t
F⁡t
MillsRatio⁡Y,t
1−F⁡tf⁡t
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[RandomVariables]
Download Help Document