Statistics
ProbabilityDensityFunction
compute the probability density function
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
ProbabilityDensityFunction(X, t, options)
PDF(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equations; specify options for computing the probability density function of a random variable
The ProbabilityDensityFunction function computes the probability density function of the specified random variable at the specified point.
The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the probability density function is computed using exact arithmetic. To compute the probability density function numerically, specify the numeric or numeric = true option.
inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the PDF. By specifying inert or inert=true, Maple will return these unevaluated.
mainbranch - returns the main branch of the distribution only.
with⁡Statistics:
Compute the probability density function of the beta distribution with parameters p and q.
ProbabilityDensityFunction⁡Β⁡p,q,t
0t<0tp−1⁢1−tq−1Β⁡p,qt<10otherwise
Use numeric parameters.
ProbabilityDensityFunction⁡Β⁡3,5,12
10564
ProbabilityDensityFunction⁡Β⁡3,5,12,numeric
1.640625000
Define new distribution.
T≔Distribution⁡`=`⁡PDF,t↦1π⋅t2+1:
X≔RandomVariable⁡T:
PDF⁡X,u
1π⁢u2+1
PDF⁡X,0
1π
CDF⁡X,u
π+2⁢arctan⁡u2⁢π
Use the inert option with a new RandomVariable, Y.
Y≔RandomVariable⁡Distribution⁡`=`⁡CDF,u↦π+2⋅arctan⁡u2⋅π
Y≔_R3
PDF⁡Y,t
1t2+1⁢π
PDF⁡Y,t,inert
ⅆⅆtπ+2⁢arctan⁡t2⁢π
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[RandomVariables]
Download Help Document