Statistics
QuadraticMean
compute the quadratic mean
Calling Sequence
Parameters
Description
Computation
Data Set Options
Random Variable Options
Examples
References
Compatibility
QuadraticMean(A, ds_options)
QuadraticMean(X, rv_options)
A
-
data set or Matrix data set
X
algebraic; random variable or distribution
ds_options
(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the mean of a data set
rv_options
(optional) equation of the form numeric=value; specifies options for computing the mean of a random variable
The QuadraticMean function computes the quadratic mean of the specified random variable or data set.
The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
All computations involving data are performed in floating-point; therefore, all data provided must have type/realcons and all returned solutions are floating-point, even if the problem is specified with exact values.
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
ignore=truefalse -- This option controls how missing data is handled by the QuadraticMean command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the QuadraticMean command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.
The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the mean is computed using exact arithmetic. To compute the mean numerically, specify the numeric or numeric = true option.
with⁡Statistics:
Compute the mean of the beta distribution with parameters p and q.
QuadraticMean⁡Β⁡p,q
p⁢qp+q2⁢p+q+1+p2p+q2
Use numeric parameters.
QuadraticMean⁡Uniform⁡3,5
7⁢33
QuadraticMean⁡Uniform⁡3,5,numeric
4.041451885
Generate a random sample of size 1000 drawn from the above distribution and compute the sample mean.
A≔Sample⁡Uniform⁡3,5,103:
QuadraticMean⁡A
4.01776103543940
Create a Β-distributed random variable Y and compute the quadratic mean of 1Y+2.
Y≔RandomVariable⁡Β⁡5,2:
QuadraticMean⁡1Y+2
5450+13440⁢ln⁡2−13440⁢ln⁡32
QuadraticMean⁡1Y+2,numeric
0.3704547970
Verify this using simulation.
C≔Sample⁡1Y+2,103:
QuadraticMean⁡C
0.369843472706530
Compute the mean of a weighted data set.
V≔seq⁡i,i=57..77,undefined:
W≔2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:
Digits≔40
QuadraticMean⁡V,weights=W
Float⁡undefined
QuadraticMean⁡V,weights=W,ignore=true
67.07019593153653564359549715487141261028
Digits≔10:
Consider the following Matrix data set.
M≔Matrix⁡3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007
M≔31130114694415271273683907884642878964844995128007
We compute the quadratic mean of each of the columns.
QuadraticMean⁡M
3.286335345031001112.85102327311112158.953865485
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The A parameter was updated in Maple 16.
See Also
Statistics[Computation]
Statistics[DescriptiveStatistics]
Statistics[Distributions]
Statistics[ExpectedValue]
Statistics[RandomVariables]
Statistics[StandardError]
Download Help Document