Statistics
Skewness
compute the coefficient of skewness
Calling Sequence
Parameters
Description
Computation
Data Set Options
Random Variable Options
Examples
References
Compatibility
Skewness(A, ds_options)
Skewness(X, rv_options)
A
-
data set or Matrix data set
X
algebraic; random variable or distribution
ds_options
(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the coefficient of skewness of a data set
rv_options
(optional) equation of the form numeric=value; specifies options for computing the coefficient of skewness of a random variable
The Skewness function computes the coefficient of skewness of the specified random variable or data set. In the data set case the following formula for computing the coefficient of skewness is used:
Skewness⁡A=N⁢CentralMoment⁡A,3N−1⁢StandardDeviation⁡A3,
where N is the number of elements in A.
The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
ignore=truefalse -- This option controls how missing data is handled by the Skewness command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Skewness command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.
The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the coefficient of skewness is computed using exact arithmetic. To compute the coefficient of skewness numerically, specify the numeric or numeric = true option.
with⁡Statistics:
Compute the coefficient of skewness of the log normal distribution with parameters μ and σ.
Skewness⁡LogNormal⁡μ,σ
−3⁢ⅇ5⁢σ22+3⁢μ−ⅇ9⁢σ22+3⁢μ−2⁢ⅇ3⁢σ22+3⁢μⅇσ2+2⁢μ⁢ⅇσ2−132
Use numeric parameters.
Skewness⁡Β⁡3,5
2⁢1525
Skewness⁡Β⁡3,5,numeric
0.3098386677
Generate a random sample of size 100000 drawn from the above distribution and compute the sample skewness.
A≔Sample⁡Β⁡3,5,105:
Skewness⁡A
0.315423490715152
Compute the standard error of the sample skewness for the normal distribution with parameters 5 and 2.
X≔RandomVariable⁡Normal⁡5,2:
B≔Sample⁡X,106:
Skewness⁡X,StandardError106⁡Skewness,X
0,61000
Skewness⁡B
−0.000789574322979220
Compute the coefficient of skewness of a weighted data set.
V≔seq⁡i,i=57..77,undefined:
W≔2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:
Skewness⁡V,weights=W
Float⁡undefined
Skewness⁡V,weights=W,ignore=true
−0.0115166848990472
Consider the following Matrix data set.
M≔Matrix⁡3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007
M≔31130114694415271273683907884642878964844995128007
We compute the skewness of each of the columns.
Skewness⁡M
−0.3073444995431300.933977457540904−0.223011885184364
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The A parameter was updated in Maple 16.
See Also
Statistics[Computation]
Statistics[DescriptiveStatistics]
Statistics[Distributions]
Statistics[ExpectedValue]
Statistics[RandomVariables]
Statistics[StandardError]
Download Help Document