Statistics
SurvivalFunction
compute the survival function
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
SurvivalFunction(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equation of the form numeric=value; specifies options for computing the survival function of a random variable
The SurvivalFunction function computes the survival function of the random variable X at the point t, which is defined as the probability that X takes a value greater than t. In other words, if S⁡t denotes the survival function of X and F⁡t denotes the cumulative distribution function of X, then S⁡t=1−F⁡t for all real values of t.
The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the survival function is computed using exact arithmetic. To compute the survival function numerically, specify the numeric or numeric = true option.
with⁡Statistics:
Compute the survival function of the beta distribution with parameters p and q.
SurvivalFunction⁡Β⁡p,q,t
1−0t<0tp⁢hypergeom⁡p,1−q,p+1,tΒ⁡p,q⁢pt<11otherwise
If p = 3 and q = 5, the plot of the survival function is as follows:
plot⁡SurvivalFunction⁡Β⁡3,5,t,t=0..1
The survival function can also be evaluated directly using numeric parameters.
SurvivalFunction⁡Β⁡3,5,12
1−35⁢hypergeom⁡−4,3,4,128
simplify⁡
29128
The numeric option gives a floating point result.
SurvivalFunction⁡Β⁡3,5,12,numeric
0.226562500000000
Define new distribution.
T≔Distribution⁡`=`⁡PDF,t↦1π⋅t2+1:
X≔RandomVariable⁡T:
CDF⁡X,t
π+2⁢arctan⁡t2⁢π
SurvivalFunction⁡X,t
1−π+2⁢arctan⁡t2⁢π
plot⁡,t=−10..10
Another distribution
U≔Distribution⁡`=`⁡CDF,t↦F⁡t,`=`⁡PDF,t↦f⁡t:
Y≔RandomVariable⁡U:
CDF⁡Y,t
F⁡t
SurvivalFunction⁡Y,t
1−F⁡t
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[InverseSurvivalFunction]
Statistics[RandomVariables]
Download Help Document