Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tests Commands

  

The Statistics package provides various parametric and non-parametric tools for performing hypothesis testing and statistical inference.

  

 

ChiSquareGoodnessOfFitTest

apply the chi-square test for goodness-of-fit

ChiSquareIndependenceTest

apply the chi-square test for independence in a matrix

ChiSquareSuitableModelTest

apply the chi-square suitable model test

OneSampleChiSquareTest

apply the one sample chi-square test for the population standard deviation

OneSampleTTest

apply the one sample t-test for the population mean

OneSampleZTest

apply the one sample z-test for the population mean

ShapiroWilkWTest

apply Shapiro and Wilk's W-test for normality

TwoSampleFTest

apply the two sample F-test for population variances

TwoSamplePairedTTest

apply the paired t-test for population means

TwoSampleTTest

apply the two sample t-test for population means

TwoSampleZTest

apply the two sample z-test for population means

 

Notes

Examples

Notes

• 

All tests generate a complete report of all calculations in the form of a userinfo message.  In order to access these reports when applying tests, specify infolevel[Statistics] := 1 or use the summarize option.

Examples

withStatistics:

Build a sample from a Rayleigh distribution and compare with the population mean and population standard deviation.

SSampleRayleigh7,100:

evalfMeanRayleigh7

8.773198959

(1)

evalfStandardDeviationRayleigh7

4.585954642

(2)

Test that the sample S is drawn from a population with mean equal to 8 and standard deviation equal to 5.

OneSampleZTestS,8,5

hypothesis=false,confidenceinterval=8.19465579918747..10.1546197837269,distribution=Normal0,1,pvalue=0.0188099792028316,statistic=2.34927558291438

(3)

Test that the sample S is drawn from a population with mean equal to 8 with unknown standard deviation.

OneSampleTTestS,8

hypothesis=false,confidenceinterval=8.26546145701860..10.0838141258958,distribution=StudentT99,pvalue=0.0118640683436966,statistic=2.56356894641468

(4)

Test that S is drawn from a normal distribution and return an embedded report.

ShapiroWilkWTestS,summarize=embed

hypothesis=false,pvalue=0.00138375156142846,statistic=0.947243047976463

(5)

Null Hypothesis:

Sample drawn from a population that follows a normal distribution

Alternative Hypothesis:

Sample drawn from population that does not follow a normal distribution

Sample Size

Computed Statistic

Computed p-value

100.

0.947243

0.00138375

Result:

Rejected: This statistical test provides evidence that the null hypothesis is false.

Test that Normal(8.77,4.59) is a suitable model for the population of S.

ChiSquareSuitableModelTestS,Normal8.77,4.59,level=0.01

hypothesis=true,criticalvalue=21.6659943178256,distribution=ChiSquare9,pvalue=0.474985626461966,statistic=8.600000000

(6)

Test for independence in a 3x2 table.

XMatrix32.,12.,14.,22.,6.,9.:

ChiSquareIndependenceTestX,level=0.05

hypothesis=false,criticalvalue=5.99146454710798,distribution=ChiSquare2,pvalue=0.00471928013399603,statistic=10.71219801

(7)

Return a report for the test above:

ChiSquareIndependenceTestX,level=0.05,summarize=true

Chi-Square Test for Independence

--------------------------------

Null Hypothesis:
Two attributes within a population are independent of one another

Alt. Hypothesis:
Two attributes within a population are not independent of one another

 

Dimensions:              3

Total Elements:          95

Distribution:            ChiSquare(2)

Computed Statistic:      10.71219801

Computed p-value:        .00471928013399603

Critical Values:         5.99146454710798

 

Result: [Rejected]
This statistical test provides evidence that the null hypothesis is false.

hypothesis=false,criticalvalue=5.99146454710798,distribution=ChiSquare2,pvalue=0.00471928013399603,statistic=10.71219801

(8)

See Also

Statistics

Statistics[Computation]