Statistics
TwoSamplePairedTTest
apply the paired t-test for population means
Calling Sequence
Parameters
Description
Options
Notes
Examples
References
Compatibility
TwoSamplePairedTTest(X1, X2, beta, options)
X1
-
first data sample
X2
second data sample
beta
realcons; the test value for the difference between the two means
options
(optional) equation(s) of the form option=value where option is one of alternative, confidence, ignore, output, summarize, weights1 or weights2; specify options for the TwoSamplePairedTTest function
The TwoSamplePairedTTest function computes the paired t-test on datasets X1 and X2 (which have been constructed by paired sampling). This calculation is used to determine the significance of the difference between sample means and an assumed difference in population means when the standard deviation of the population is unknown.
The first parameter X1 is the first data sample to use in the analysis.
The second parameter X2 is the second data sample to use in the analysis.
The third parameter beta is the assumed difference in population means (assumed population mean of X1 minus the assumed population mean of X2), specified as a real constant.
The options argument can contain one or more of the options shown below.
alternative='twotailed', 'lowertail', or 'uppertail'
This option is used to specify the type or interval used in the analysis, or similarly, the alternative hypothesis to consider when performing the analysis.
confidence=float
This option is used to specify the confidence level of the interval and must be a floating-point value between 0 and 1. By default this is set to 0.95.
ignore=truefalse
This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in the data samples will be ignored.
output='report', 'statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
summarize= 'true', 'false', 'embed'
This option controls the display of a printed or embedded summary for the hypothesis test. Unlike the output option, the displayed summary is not assignable output.
weights=rtable
Vector of weights (one-dimensional rtable). If these weights are given, the TwoSamplePairedTTest function will scale each data point in X1 and X2 to have given weight. Note that the weights provided must have type realcons and the results are floating-point, even if the problem is specified with exact values. Both the data array and the weights array must have the same number of elements.
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1 or use the summarize option.
with⁡Statistics:
Specify the data sample.
X≔Array⁡9,10,8,4,8,3,0,10,15,9:
Z≔Array⁡10,11,7,3,10,5,2,12,14,10:
Mean⁡X−Mean⁡Z
−0.800000000000001
Calculate the paired t-test on an array of values.
TwoSamplePairedTTest⁡X,Z,1,confidence=0.95,summarize=embed:
Null Hypothesis:
Sample drawn from populations with difference of means equal to 1
Alternative Hypothesis:
Sample drawn from population with difference of means not equal to 1
Sample Size
Difference in Means
Difference Standard Deviation
Distribution
Computed Statistic
Computed p-value
Confidence Interval
10.
−0.800000
1.31656
StudentT⁡9
−4.32346
0.00192341
−1.74181..0.141811
Result:
Rejected: This statistical test provides evidence that the null hypothesis is false.
Calculate the lower tail paired t-test.
TwoSamplePairedTTest⁡X,Z,1,confidence=0.95,alternative=lowertail,summarize=true
Standard T-Test with Paired Samples
-----------------------------------
Null Hypothesis: Sample drawn from populations with difference of means greater than 1
Alt. Hypothesis: Sample drawn from population with difference of means less than 1
Sample Size: 10
Difference in Means: -0.8
Difference Std. Dev.: 1.31656
Distribution: StudentT(9)
Computed Statistic: -4.32346015250714
Computed p-value: .000961705861738372
Confidence Interval: -infinity .. -.0368142919477125
(difference of population means)
Result: [Rejected] This statistical test provides evidence that the null hypothesis is false.
hypothesis=false,confidenceinterval=−∞..−0.0368142919477125,distribution=StudentT⁡9,pvalue=0.000961705861738372,statistic=−4.32346015250714
As an alternative to using the summarize option, setting infolevel[Statistics] := 1 also returns the printed summary.
infolevelStatistics≔1:
Calculate the upper tail paired t-test.
TwoSamplePairedTTest⁡X,Z,1,confidence=0.95,alternative=uppertail
Null Hypothesis: Sample drawn from populations with difference of means less than 1
Alt. Hypothesis: Sample drawn from population with difference of means greater than 1
Computed p-value: .999038294138262
Confidence Interval: -1.56318570805229 .. infinity
Result: [Accepted] This statistical test does not provide enough evidence to conclude that the null hypothesis is false.
hypothesis=true,confidenceinterval=−1.56318570805229..∞,distribution=StudentT⁡9,pvalue=0.999038294138262,statistic=−4.32346015250714
Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
The Statistics[TwoSamplePairedTTest] command was updated in Maple 2016.
The summarize option was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
Statistics[Computation]
Statistics[Tests][OneSampleTTest]
Statistics[Tests][TwoSampleTTest]
Download Help Document