Student[Basics]
SummationSteps
generate steps for evaluating summations
Calling Sequence
Parameters
Description
Examples
Compatibility
SummationSteps( expr )
SummationSteps( expr, implicitmultiply = true )
expr
-
string or expression
implicitmultiply
(optional) truefalse
output = ...
(optional) option to control the return value
displaystyle = ...
(optional) option to control the layout of the steps
The SummationSteps command accepts an expression that is expected to contain summations and displays the steps required to evaluate each summation given.
If expr is a string, then it is parsed into an expression using InertForm:-Parse so that no automatic simplifications are applied, and thus no steps are missed.
The implicitmultiply option is only relevant when expr is a string. This option is passed directly on to the InertForm:-Parse command and will cause things like 2x to be interpreted as 2*x, but also, xyz to be interpreted as x*y*z.
The output and displaystyle options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.
This function is part of the Student:-Basics package.
with⁡Student:-Basics:
SummationSteps⁡Sum⁡i,i=1..n
∑i=1n⁡i•Evaluate sum∑i=1n⁡in+122−n2−12•Simplify12⁢n2+12⁢n
SummationSteps⁡1+2⁢x+3⁢Sum⁡2⁢i,i=1..n
1+2⋅x+3⋅∑i=1n⁡2⋅i•Examine Sum∑i=1n⁡2⋅i•Bring2outside of the sum2⁢∑i=1n⁡i•Evaluate sum∑i=1n⁡i2⋅n+122−n2−12•Multiplyn+12−n−1•Simplifyn2+n•This gives:1+2⋅x+3⋅n2+n•Simplify3⁢n2+3⁢n+2⁢x+1
SummationSteps⁡Sum⁡i,i=1..n+Sum⁡j+2,j=4..18+Sum⁡4⁢k+1,k=10..n
∑i=1n⁡i+∑j=418⁡j+2+∑k=10n⁡4⋅k+4•Examine Sum∑i=1n⁡i•Evaluate sum∑i=1n⁡in+122−n2−12•Simplify12⁢n2+12⁢n•This gives:12⁢n2+12⁢n+∑j=418⁡j+2+∑k=10n⁡4⋅k+4•Examine Sum∑j=418⁡j+2•Reindex the summation so it starts at 1∑j=115⁡j+3+2•Simplify and expand expression∑j=115⁡j+5•Apply the sum rule:∑k=mn⁡a__k+b__k=∑k=mn⁡a__k+∑k=mn⁡b__k∑j=115⁡j+∑j=115⁡5•Evaluate the1stsum∑j=115⁡j120•Evaluate the2ndsum∑j=115⁡575•Substitute evaluated sums into the expression120+75•Simplify195•This gives:12⁢n2+12⁢n+195+∑k=10n⁡4⋅k+4•Examine Sum∑k=10n⁡4⋅k+4•Reindex the summation so it starts at 1∑k=1n−9⁡4⋅k+9+4•Simplify and expand expression∑k=1n−9⁡4⁢k+40•Apply the sum rule:∑k=mn⁡a__k+b__k=∑k=mn⁡a__k+∑k=mn⁡b__k∑k=1n−9⁡4⁢k+∑k=1n−9⁡40•Bring4outside of the1stsum4⁢∑k=1n−9⁡k•Evaluate the1stsum∑k=1n−9⁡k4⋅−8+n22+4−n2•Multiply2⁢−8+n2+16−2⁢n•Evaluate the2ndsum∑k=1n−9⁡4040⁢n−360•Substitute evaluated sums into the expression2⁢−8+n2+16−2⁢n+40⁢n−360•Simplify2⁢n2+6⁢n−216•This gives:12⁢n2+12⁢n+195+2⁢n2+6⁢n−216•Simplify52⁢n2+132⁢n−21
SummationSteps⁡Sum⁡1n!,n=1..∞
∑n=1∞⁡1n!•Apply the ratio test, which determines if the series diverges usinglimn→∞⁡an+1an=LIf 0 ≤ L < 1 then ∑n=0∞⁡an converges absolutely If L > 1 then ∑n=0∞⁡an diverges If L = 1 then no conclusion is possible •So we getlimn→∞⁡1n+1!1n!•Simplify inside expressionlimn→∞⁡1n+1•Take the limit0•Since the0≤LandL<1the infinte sum converges absolutely∑n=1∞⁡1n! converges
The Student:-Basics:-SummationSteps command was introduced in Maple 2024.
For more information on Maple 2024 changes, see Updates in Maple 2024.
See Also
Student:-Basics
Student:-Basics:-ExpandSteps
Student:-Basics:-SimplifySteps
Download Help Document