Boole's Rule
Calling Sequence
Parameters
Description
Examples
ApproximateInt(f(x), x = a..b, method = boole, opts)
ApproximateInt(f(x), a..b, method = boole, opts)
ApproximateInt(Int(f(x), x = a..b), method = boole, opts)
f(x)
-
algebraic expression in variable 'x'
x
name; specify the independent variable
a, b
algebraic expressions; specify the interval
opts
equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options
The ApproximateInt(f(x), x = a..b, method = boole, opts) command approximates the integral of f(x) from a to b by using Boole's rule. The first two arguments (function expression and range) can be replaced by a definite integral.
If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.
Given a partition P=a=x0,x1,...,xN=b of the interval a,b, Boole's rule approximates the integral on each subinterval xi−1,xi by integrating the quartic function that interpolates five equally spaced points in that subinterval.
In the case that the widths of the subintervals are equal, the approximation can be written as
b−a⁢f⁡x+3⁢f⁡2⁢x03+x13+3⁢f⁡x03+2⁢x13+2⁢f⁡x1+3⁢f⁡2⁢x13+x23+3⁢f⁡x13+2⁢xw3+2⁢f⁡x2+...+3⁢f⁡xN−13+2⁢xN3+f⁡xN8⁢N
Traditionally, Boole's rule is written as: given N, where N is a positive multiple of 3, and given equally spaced points a=x0,x1,x2,...,xN=b, an approximation to the integral ∫abf⁡xⅆx is
3⁢b−a⁢f⁡x0+3⁢f⁡x1+3⁢f⁡x2+2⁢f⁡x3+3⁢f⁡x4+3⁢f⁡x5+2⁢f⁡x6+3⁢f⁡x7+...+3⁢f⁡xN−1+f⁡xN8⁢N
By default, the interval is divided into 10 equal-sized subintervals.
For the options opts, see the ApproximateInt help page.
This rule can be applied interactively, through the ApproximateInt Tutor.
This rule is also sometimes known as Bode's Rule due to a misattribution in the literature. The ApproximateInt command will accept either method=boole or method=bode.
polynomial≔CurveFittingPolynomialInterpolation⁡x0,3⁢x0+x14,x0+x22,x0+3⁢x14,x1,f⁡0,f⁡14,f⁡12,f⁡34,f⁡1,z:
integrated≔int⁡polynomial,z=x0..x1:
factor⁡integrated
−x0−x1⁢−72⁢f⁡0⁢x1⁢x23−88⁢f⁡1⁢x1⁢x23+72⁢f⁡12⁢x02⁢x12−656⁢f⁡14⁢x1⁢x23−624⁢f⁡34⁢x1⁢x23+60⁢f⁡0⁢x02⁢x1⁢x2−150⁢f⁡0⁢x0⁢x12⁢x2+90⁢f⁡0⁢x0⁢x1⁢x22+432⁢f⁡14⁢x02⁢x1⁢x2−768⁢f⁡14⁢x0⁢x12⁢x2+336⁢f⁡14⁢x0⁢x1⁢x22+336⁢f⁡34⁢x02⁢x1⁢x2−768⁢f⁡34⁢x0⁢x12⁢x2+432⁢f⁡34⁢x0⁢x1⁢x22+72⁢f⁡1⁢x02⁢x1⁢x2−114⁢f⁡1⁢x0⁢x12⁢x2+42⁢f⁡1⁢x0⁢x1⁢x22+20⁢f⁡1⁢x24+160⁢f⁡34⁢x24+12⁢f⁡12⁢x04+12⁢f⁡12⁢x14+7⁢f⁡1⁢x04+7⁢f⁡0⁢x04−12⁢f⁡0⁢x14+20⁢f⁡0⁢x24+32⁢f⁡14⁢x04+160⁢f⁡14⁢x24+32⁢f⁡34⁢x04−36⁢f⁡1⁢x13⁢x2+111⁢f⁡1⁢x12⁢x22+36⁢f⁡1⁢x0⁢x13+8⁢f⁡1⁢x0⁢x23−30⁢f⁡0⁢x03⁢x1+2⁢f⁡0⁢x03⁢x2+15⁢f⁡0⁢x02⁢x12−33⁢f⁡0⁢x02⁢x22+40⁢f⁡0⁢x0⁢x13−8⁢f⁡0⁢x0⁢x23+8⁢f⁡0⁢x13⁢x2+63⁢f⁡0⁢x12⁢x22−112⁢f⁡14⁢x03⁢x1−16⁢f⁡14⁢x03⁢x2−48⁢f⁡14⁢x02⁢x12−192⁢f⁡14⁢x02⁢x22+288⁢f⁡14⁢x0⁢x13+16⁢f⁡14⁢x0⁢x23−288⁢f⁡14⁢x13⁢x2+816⁢f⁡14⁢x12⁢x22−144⁢f⁡34⁢x03⁢x1+16⁢f⁡34⁢x03⁢x2+48⁢f⁡34⁢x02⁢x12−192⁢f⁡34⁢x02⁢x22+224⁢f⁡34⁢x0⁢x13−16⁢f⁡34⁢x0⁢x23−224⁢f⁡34⁢x13⁢x2+720⁢f⁡34⁢x12⁢x22−48⁢f⁡12⁢x03⁢x1−48⁢f⁡12⁢x0⁢x13−26⁢f⁡1⁢x03⁢x1−2⁢f⁡1⁢x03⁢x2+3⁢f⁡1⁢x02⁢x12−33⁢f⁡1⁢x02⁢x2290⁢x0−x2⁢x0−2⁢x2+x1⁢x0−3⁢x1+2⁢x2⁢−2⁢x1+x0+x2
with⁡StudentCalculus1:
ApproximateInt⁡sin⁡x,x=0..5,method=boole
8⁢sin⁡37845+sin⁡19415+8⁢sin⁡39845+7⁢sin⁡5180+sin⁡15415+8⁢sin⁡31845+7⁢sin⁡490+8⁢sin⁡33845+sin⁡17415+8⁢sin⁡35845+7⁢sin⁡9290+8⁢sin⁡23845+7⁢sin⁡390+8⁢sin⁡25845+sin⁡13415+8⁢sin⁡27845+7⁢sin⁡7290+8⁢sin⁡29845+8⁢sin⁡17845+sin⁡9415+8⁢sin⁡19845+7⁢sin⁡5290+8⁢sin⁡21845+sin⁡11415+sin⁡5415+8⁢sin⁡11845+7⁢sin⁡3290+8⁢sin⁡13845+sin⁡7415+8⁢sin⁡15845+7⁢sin⁡290+8⁢sin⁡3845+7⁢sin⁡1290+8⁢sin⁡5845+sin⁡3415+8⁢sin⁡7845+8⁢sin⁡9845+8⁢sin⁡1845+sin⁡1415+7⁢sin⁡190
ApproximateInt⁡x⁢x−2⁢x−3,x=0..5,method=boole,output=plot
ApproximateInt⁡tan⁡x−2⁢x,−1..1,method=boole,output=plot,partition=50
To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu. Select Animation > Play.
ApproximateInt⁡ln⁡x,x=1..100,method=boole,output=animation
See Also
ApproximateInt
int
Newton-Cotes Rules
Simpson's 3/8 Rule
Simpson's Rule
Student
Student plot options
Student[Calculus1]
Student[Calculus1][ApproximateInt]
Student[Calculus1][ApproximateIntTutor]
Student[Calculus1][RiemannSum]
Student[Calculus1][VisualizationOverview]
Trapezoidal Rule
Download Help Document