Boole's Rule - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Boole's Rule

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ApproximateInt(f(x), x = a..b, method = boole, opts)

ApproximateInt(f(x), a..b, method = boole, opts)

ApproximateInt(Int(f(x), x = a..b), method = boole, opts)

Parameters

f(x)

-

algebraic expression in variable 'x'

x

-

name; specify the independent variable

a, b

-

algebraic expressions; specify the interval

opts

-

equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options

Description

• 

The ApproximateInt(f(x), x = a..b, method = boole, opts) command approximates the integral of f(x) from a to b by using Boole's rule. The first two arguments (function expression and range) can be replaced by a definite integral.

• 

If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.

• 

Given a partition P=a=x0,x1,...,xN=b of the interval a,b, Boole's rule approximates the integral on each subinterval xi1,xi by integrating the quartic function that interpolates five equally spaced points in that subinterval.

• 

In the case that the widths of the subintervals are equal, the approximation can be written as

  

 

bafx+3f2x03+x13+3fx03+2x13+2fx1+3f2x13+x23+3fx13+2xw3+2fx2+...+3fxN13+2xN3+fxN8N

  

Traditionally, Boole's rule is written as: given N, where N is a positive multiple of 3, and given equally spaced points a=x0,x1,x2,...,xN=b, an approximation to the integral abfxⅆx is

  

 

3bafx0+3fx1+3fx2+2fx3+3fx4+3fx5+2fx6+3fx7+...+3fxN1+fxN8N

• 

By default, the interval is divided into 10 equal-sized subintervals.

• 

For the options opts, see the ApproximateInt help page.

• 

This rule can be applied interactively, through the ApproximateInt Tutor.

• 

This rule is also sometimes known as Bode's Rule due to a misattribution in the literature.  The ApproximateInt command will accept either method=boole or method=bode.

Examples

polynomialCurveFittingPolynomialInterpolationx0,3x0+x14,x0+x22,x0+3x14,x1,f0,f14,f12,f34,f1,z:

integratedintpolynomial,z=x0..x1:

factorintegrated

x0x172f0x1x2388f1x1x23+72f12x02x12656f14x1x23624f34x1x23+60f0x02x1x2150f0x0x12x2+90f0x0x1x22+432f14x02x1x2768f14x0x12x2+336f14x0x1x22+336f34x02x1x2768f34x0x12x2+432f34x0x1x22+72f1x02x1x2114f1x0x12x2+42f1x0x1x22+20f1x24+160f34x24+12f12x04+12f12x14+7f1x04+7f0x0412f0x14+20f0x24+32f14x04+160f14x24+32f34x0436f1x13x2+111f1x12x22+36f1x0x13+8f1x0x2330f0x03x1+2f0x03x2+15f0x02x1233f0x02x22+40f0x0x138f0x0x23+8f0x13x2+63f0x12x22112f14x03x116f14x03x248f14x02x12192f14x02x22+288f14x0x13+16f14x0x23288f14x13x2+816f14x12x22144f34x03x1+16f34x03x2+48f34x02x12192f34x02x22+224f34x0x1316f34x0x23224f34x13x2+720f34x12x2248f12x03x148f12x0x1326f1x03x12f1x03x2+3f1x02x1233f1x02x2290x0x2x02x2+x1x03x1+2x22x1+x0+x2

(1)

withStudentCalculus1:

ApproximateIntsinx,x=0..5,method=boole

8sin37845+sin19415+8sin39845+7sin5180+sin15415+8sin31845+7sin490+8sin33845+sin17415+8sin35845+7sin9290+8sin23845+7sin390+8sin25845+sin13415+8sin27845+7sin7290+8sin29845+8sin17845+sin9415+8sin19845+7sin5290+8sin21845+sin11415+sin5415+8sin11845+7sin3290+8sin13845+sin7415+8sin15845+7sin290+8sin3845+7sin1290+8sin5845+sin3415+8sin7845+8sin9845+8sin1845+sin1415+7sin190

(2)

ApproximateIntxx2x3,x=0..5,method=boole,output=plot

ApproximateInttanx2x,1..1,method=boole,output=plot,partition=50

To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu.  Select Animation > Play.

ApproximateIntlnx,x=1..100,method=boole,output=animation

See Also

ApproximateInt

int

Newton-Cotes Rules

Simpson's 3/8 Rule

Simpson's Rule

Student

Student plot options

Student[Calculus1]

Student[Calculus1][ApproximateInt]

Student[Calculus1][ApproximateIntTutor]

Student[Calculus1][RiemannSum]

Student[Calculus1][VisualizationOverview]

Trapezoidal Rule