Newton-Cotes Formulae
Calling Sequence
Parameters
Description
Examples
ApproximateInt(f(x), x = a..b, method = newtoncotes[N], opts)
ApproximateInt(f(x), a..b, method = newtoncotes[N], opts)
ApproximateInt(Int(f(x), x = a..b), method = newtoncotes[N], opts)
f(x)
-
algebraic expression in variable 'x'
x
name; specify the independent variable
a, b
algebraic expressions; specify the interval
N
positive integer
opts
equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options
The ApproximateInt(f(x), x = a..b, method = newtoncotes[N], opts) command approximates the integral of f(x) from a to b by using the Nth degree Newton-Cotes formula. The first two arguments (function expression and range) can be replaced by a definite integral.
If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.
Given a partition P=a=x0,x1,...,xN=b of the interval a,b, the Nth degree Newton-Cotes formula approximates the integral on each subinterval xi−1,xi by integrating the Nth degree polynomial which interpolates N−1 equally spaced points between the end points of the interval.
The Newton-Cotes formulae are generalizations of the simpler polynomial interpolation routines. The following table gives the correspondence between the other methods and the degree.
Equivalent Method
Order
Trapezoid
1
Simpson's Rule
2
Simpson's 3/8 Rule
3
Boole's Rule
4
By default, the interval is divided into 10 equal-sized subintervals.
For the options opts, see the ApproximateInt help page.
This rule can be applied interactively, through the ApproximateInt Tutor.
int⁡sin⁡x,x=0...5.0
0.7163378145
with⁡StudentCalculus1:
ApproximateInt⁡sin⁡x,x=0...5.0,method=newtoncotes1
0.7013515555
ApproximateInt⁡sin⁡x,x=0...5.0,method=newtoncotes2
0.7163534765
ApproximateInt⁡sin⁡x,x=0...5.0,method=newtoncotes3
0.7163447696
ApproximateInt⁡sin⁡x,x=0...5.0,method=newtoncotes4
0.7163378087
ApproximateInt⁡sin⁡x,x=0...5.0,method=newtoncotes6
ApproximateInt⁡x⁢x−2⁢x−3,0..5,method=simpson,output=plot
ApproximateInt⁡tan⁡x−2⁢x,x=−1..1,method=simpson,output=plot,partition=50
To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu. Select Animation > Play.
ApproximateInt⁡ln⁡x,x=1..100,method=simpson,output=animation
See Also
Boole's Rules
plot/options
Student
Student plot options
Student[Calculus1]
Student[Calculus1][ApproximateInt]
Student[Calculus1][ApproximateIntTutor]
Student[Calculus1][RiemannSum]
Student[Calculus1][VisualizationOverview]
Trapezoidal Rule
Download Help Document