Student[LinearAlgebra]
IsOrthogonal
test if a Matrix is orthogonal
IsUnitary
test if a Matrix is unitary
Calling Sequence
Parameters
Description
Examples
IsOrthogonal(A, options)
IsUnitary(A, options)
A
-
square Matrix
options
(optional) parameters; for a complete list, see LinearAlgebra[IsOrthogonal]
The IsOrthogonal(A) command determines if A is an orthogonal Matrix (A.A+=Id, where A+ is the transpose and Id is the identity Matrix).
In general, the IsOrthogonal command returns true if it can determine that Matrix A is orthogonal, false if it can determine that the Matrix is not orthogonal, and FAIL otherwise.
The IsUnitary(A) command determines if A is a unitary Matrix (A.A*=Id, where A* is the Hermitian transpose and Id is the identity Matrix).
In general, the IsUnitary command returns true if it can determine that Matrix A is unitary, false if it can determine that the Matrix is not unitary, and FAIL otherwise.
with⁡StudentLinearAlgebra:
G≔RotationMatrix⁡π7
G≔cos⁡π7−sin⁡π7sin⁡π7cos⁡π7
IsOrthogonal⁡G
true
map⁡simplify,G·G%T
1001
Q≔sqrt⁡10⋅310,−sqrt⁡1010|sqrt⁡10⁢I10,3⁢sqrt⁡10⁢I10
Q≔3⁢1010I10⁢10−10103⁢I10⁢10
IsOrthogonal⁡Q
false
IsUnitary⁡Q
See Also
LinearAlgebra[IsOrthogonal]
map
simplify
Student[LinearAlgebra][IdentityMatrix]
Student[LinearAlgebra][Operators]
Student[LinearAlgebra][RotationMatrix]
Download Help Document