Student[NumericalAnalysis]
BasisFunctions
return a list of the basis functions from a POLYINTERP structure
Calling Sequence
Parameters
Description
Examples
BasisFunctions(p)
BasisFunctions(p, indvar)
p
-
a POLYINTERP structure
indvar
(optional) name; the name to assign to the independent variable in the basis functions that are returned
The BasisFunctions routine retrieves the basis functions from a POLYINTERP structure.
The POLYINTERP structure is created using the PolynomialInterpolation command.
Only POLYINTERP structures that contain data points that have been interpolated using the Lagrange, Newton or Hermite methods can use the BasisFunctions command.
with⁡StudentNumericalAnalysis:
xy≔0,4.0,0.5,0,1.0,−2.0,1.5,0,2.0,1.0,2.5,0,3.0,−0.5
p1≔PolynomialInterpolation⁡xy,function=22−x⁢cos⁡π⁢x,method=lagrange,extrapolate=0.25,0.75,1.25,errorboundvar=ξ:
BasisFunctions⁡p1
0.08888888889⁢x−0.5⁢x−1.0⁢x−1.5⁢x−2.0⁢x−2.5⁢x−3.0,−0.5333333333⁢x⁢x−1.0⁢x−1.5⁢x−2.0⁢x−2.5⁢x−3.0,1.333333333⁢x⁢x−0.5⁢x−1.5⁢x−2.0⁢x−2.5⁢x−3.0,−1.777777778⁢x⁢x−0.5⁢x−1.0⁢x−2.0⁢x−2.5⁢x−3.0,1.333333333⁢x⁢x−0.5⁢x−1.0⁢x−1.5⁢x−2.5⁢x−3.0,−0.5333333333⁢x⁢x−0.5⁢x−1.0⁢x−1.5⁢x−2.0⁢x−3.0,0.08888888889⁢x⁢x−0.5⁢x−1.0⁢x−1.5⁢x−2.0⁢x−2.5
Draw⁡p1,objects=BasisFunctions
xyyp≔1,1.105170918,0.2210341836,1.5,1.252322716,0.3756968148,2,1.491824698,0.5967298792
p2≔PolynomialInterpolation⁡xyyp,method=hermite,function=exp⁡0.1⁢x2,independentvar=x,errorboundvar=ξ,digits=5:
BasisFunctions⁡p2
1,x−1.,x−1.2,x−1.2⁢x−1.5,x−1.2⁢x−1.52,x−1.2⁢x−1.52⁢x−2.
See Also
Student[NumericalAnalysis][AddPoint]
Student[NumericalAnalysis][ComputationOverview]
Student[NumericalAnalysis][Draw]
Student[NumericalAnalysis][PolynomialInterpolation]
Student[NumericalAnalysis][RemainderTerm]
Download Help Document