Student[NumericalAnalysis]
DividedDifferenceTable
compute the divided difference table
Calling Sequence
Parameters
Description
Examples
DividedDifferenceTable(p)
DividedDifferenceTable(p, pt)
p
-
a POLYINTERP structure
pt
(optional) numeric; a point to evaluate the divided difference table
The DividedDifferenceTable command takes an interpolation structure and computes the associated divided difference table.
This command can only be used on interpolation structures that were computed with Hermite or Newton methods.
The POLYINTERP structure is created using the PolynomialInterpolation command.
with⁡StudentNumericalAnalysis:
xy≔1.0,0.7651977,1.3,0.6200860,1.6,0.4554022,1.9,0.2818186
p1≔PolynomialInterpolation⁡xy,independentvar=x,method=newton:
DividedDifferenceTable⁡p1
0.76519770000.6200860−0.4837056667000.4554022−0.5489460000−0.108733888800.2818186−0.5786120000−0.049443333330.06587839497
p1a≔AddPoint⁡p1,1.8,0.3920223:
DividedDifferenceTable⁡p1a
0.765197700000.6200860−0.48370566670000.4554022−0.5489460000−0.1087338888000.2818186−0.5786120000−0.049443333330.0658783949700.3920223−1.102037000−2.617125000−5.135363334−6.501552161
xyyp≔1,1.105170918,0.2210341836,1.5,1.252322716,0.3756968148,2,1.491824698,0.5967298792
p2≔PolynomialInterpolation⁡xyyp,method=hermite,function=exp⁡0.1⁢x2,independentvar=x,errorboundvar=ξ,digits=5:
DividedDifferenceTable⁡p2
1.1052000001.10520.2210300001.25230.294200.146340001.25230.375700.163000.033320001.49180.479000.206600.0436000.01028001.49180.596730.235460.0577200.0141200.0038400
See Also
Student[NumericalAnalysis][AddPoint]
Student[NumericalAnalysis][ApproximateExactUpperBound]
Student[NumericalAnalysis][BasisFunctions]
Student[NumericalAnalysis][ComputationOverview]
Student[NumericalAnalysis][Draw]
Student[NumericalAnalysis][InterpolantRemainderTerm]
Student[NumericalAnalysis][NevilleTable]
Student[NumericalAnalysis][PolynomialInterpolation]
Download Help Document