Student[NumericalAnalysis]
RemainderTerm
return the remainder term from an interpolation structure
Calling Sequence
Parameters
Options
Description
Notes
Examples
RemainderTerm(p, opts)
p
-
a POLYINTERP structure
opts
(optional) equation(s) of the form keyword=value, where keyword is: errorboundvar; options for returning the remainder term
errorboundvar = name
The name to assign to the independent variable in the remainder term.
The RemainderTerm command returns the remainder term from the POLYINTERP structure p.
The POLYINTERP structure is created using the PolynomialInterpolation command.
In order for the remainder term to exist, the POLYINTERP structure p must have an associated exact function, given through the PolynomialInterpolation command.
POLYINTERP structures that were created with the CubicSpline command cannot be used with the RemainderTerm command, since they do not have a remainder term.
A remainder term is also called an error term.
with⁡StudentNumericalAnalysis:
xy≔0,4.0,0.5,0,1.0,−2.0,1.5,0,2.0,1.0,2.5,0,3.0,−0.5
p1≔PolynomialInterpolation⁡xy,function=22−x⁢cos⁡π⁢x,method=lagrange,extrapolate=0.25,0.75,1.25,errorboundvar=ξ:
RemainderTerm⁡p1
−22−ξ⁢ln⁡27⁢cos⁡π⁢ξ−7⁢22−ξ⁢ln⁡26⁢π⁢sin⁡π⁢ξ+21⁢22−ξ⁢ln⁡25⁢π2⁢cos⁡π⁢ξ+35⁢22−ξ⁢ln⁡24⁢π3⁢sin⁡π⁢ξ−35⁢22−ξ⁢ln⁡23⁢π4⁢cos⁡π⁢ξ−21⁢22−ξ⁢ln⁡22⁢π5⁢sin⁡π⁢ξ+7⁢22−ξ⁢ln⁡2⁢π6⁢cos⁡π⁢ξ+22−ξ⁢π7⁢sin⁡π⁢ξ⁢x⁢x−0.5⁢x−1.0⁢x−1.5⁢x−2.0⁢x−2.5⁢x−3.05040&where0.≤ξ≤3.0
xyyp≔1,1.105170918,0.2210341836,1.5,1.252322716,0.3756968148,2,1.491824698,0.5967298792
p2≔PolynomialInterpolation⁡xyyp,method=hermite,function=exp⁡0.1⁢x2,independentvar=x,errorboundvar=ξ,digits=5:
RemainderTerm⁡p2
0.120⁢ⅇ0.1⁢ξ2+0.0720⁢ξ2⁢ⅇ0.1⁢ξ2+0.00480⁢ξ4⁢ⅇ0.1⁢ξ2+0.000064⁢ξ6⁢ⅇ0.1⁢ξ2⁢x−1.2⁢x−1.52⁢x−2.2720&where1.≤ξ≤2.
See Also
Student[NumericalAnalysis][ApproximateExactUpperBound]
Student[NumericalAnalysis][ApproximateValue]
Student[NumericalAnalysis][ComputationOverview]
Student[NumericalAnalysis][DataPoints]
Student[NumericalAnalysis][ExactValue]
Student[NumericalAnalysis][InterpolantRemainderTerm]
Student[NumericalAnalysis][PolynomialInterpolation]
Download Help Document