Student[ODEs]
IntegratingFactor
find an integrating factor for an ODE
Calling Sequence
Parameters
Description
Examples
Compatibility
IntegratingFactor(ODE, y(x))
ODE
-
an ordinary differential equation
y
name; the dependent variable
x
name; the independent variable
IntegratingFactor(ODE, y(x)) attempts to find an integrating factor for an ODE.
Multiplying by the integrating factor makes the ODE exact, that is, a total derivative with respect to x. The new equation can then be solved by simply integrating with respect to x.
with⁡StudentODEs:
ode1≔diff⁡z⁡t,t⁢t−1⁢z⁡t2=−t2⁢z⁡t+1
ode1≔ⅆⅆtz⁡t⁢t−1⁢z⁡t2=−t2⁢z⁡t+1
μ1≔IntegratingFactor⁡ode1,z⁡t
μ1≔1z⁡t+1⁢t−1
exact_ode1≔μ1⁢ode1
exact_ode1≔ⅆⅆtz⁡t⁢z⁡t2z⁡t+1=−t2t−1
Integrate⁡exact_ode1,z⁡t
z⁡t22−z⁡t+ln⁡z⁡t+1=−t22−t−ln⁡t−1+_C1
ode2≔diff⁡y⁡x,x,x,x=x⁢diff⁡y⁡x,x+y⁡x⁢diff⁡y⁡x,x,xy⁡x⁢x
ode2≔ⅆ3ⅆx3y⁡x=x⁢ⅆⅆxy⁡x+y⁡x⁢ⅆ2ⅆx2y⁡xy⁡x⁢x
μ2≔IntegratingFactor⁡ode2,y⁡x
μ2≔1y⁡x⁢x
exact_ode2≔μ2⁢ode2
exact_ode2≔ⅆ3ⅆx3y⁡xy⁡x⁢x=x⁢ⅆⅆxy⁡x+y⁡x⁢ⅆ2ⅆx2y⁡xy⁡x2⁢x2
sol≔Integrate:-Apply⁡exact_ode2,y⁡x
sol≔∫x⁢ⅆⅆxy⁡x+y⁡x⁢ⅆ2ⅆx2y⁡xy⁡x2⁢x2−ⅆ3ⅆx3y⁡xy⁡x⁢xⅆx=∫0ⅆx+c__1
Integrate:-Evaluate⁡sol
−ⅆ2ⅆx2y⁡xy⁡x⁢x=c__1
The Student[ODEs][IntegratingFactor] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
DEtools[intfactor]
dsolve
Student
Student[ODEs][Integrate]
Download Help Document