Student[ODEs][ReduceOrder]
NoDependentVariable
Reduce the order of an ODE missing the dependent variable
Calling Sequence
Parameters
Description
Examples
Compatibility
NoDependentVariable(ODE)
NoDependentVariable(ODE, y(x))
NoDependentVariable(ODE, y(x), u(t))
ODE
-
ordinary differential equation missing the dependent variable
y
name; the dependent variable of the original ODE
x
name; the independent variable of the original ODE
u
name; the dependent variable for the reduced ODE
t
name; the independent variable for the reduced ODE
NoDependentVariable finds the solution of an ODE which doesn't contain the dependent variable other than in its derivatives.
The second argument, y(x), representing the variable for the existing ODE, is optional. It must be given however, if the dependent and independent variables cannot be determined from the ODE.
The third argument, u(t), representing the variable for the reduced ODE, is optional. If it is not given, new independent and dependent variables will be chosen which do not conflict with the existing variables.
The default output is a sequence consisting of the reduced ODE in terms of the new variables, followed by the transformation used to recover the original ODE from the reduced ODE.
If an extra option solve or solve=true is also given, an attempt is made to solve the reduced ODE and return the general solution to the original ODE. If successful, the general solution of the original ODE will be returned.
with⁡StudentODEs:
with⁡StudentODEsReduceOrder:
Given a 2nd order ODE for y(x) which doesn't depend on y(x):
ode≔diff⁡y⁡x,x,x+diff⁡y⁡x,x2⁢x=0
ode≔ⅆ2ⅆx2y⁡x+ⅆⅆxy⁡x2⁢x=0
Find a reduction of order to a 1st order ODE, and the associated transformation:
reduced_ode,tr≔NoDependentVariable⁡ode
reduced_ode,tr≔ⅆⅆtu⁡t+u⁡t2⁢t=0,t=x,u⁡t=ⅆⅆxy⁡x
Solve the reduced order ODE:
reduced_sol≔Solve⁡reduced_ode,u⁡t
reduced_sol≔u⁡t=−2−t2+2⁢_C1
Apply the transformation to find a simpler ODE for the original variable y(x):
new_ode≔eval⁡reduced_sol,tr
new_ode≔ⅆⅆxy⁡x=−2−x2+2⁢_C1
Solve the simpler ODE to find the general solution of the original ODE:
Solve⁡new_ode,y⁡x
y⁡x=−2⁢arctanh⁡x⁢22⁢c__1−_C2⁢c__1c__1
Alternatively, the original ODE can be solved in a single step if we use the option solve:
NoDependentVariable⁡ode,solve
y⁡x=−2⁢arctanh⁡x⁢22⁢c__1c__1+_C2
Another example:
ode2≔diff⁡y⁡x,x,x+x⁢diff⁡y⁡x,x=0
ode2≔ⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡x=0
reduced_ode2,tr2≔NoDependentVariable⁡ode2,y⁡x,v⁡s
reduced_ode2,tr2≔ⅆⅆsv⁡s+s⁢v⁡s=0,s=x,v⁡s=ⅆⅆxy⁡x
reduced_sol2≔Solve⁡reduced_ode2,v⁡s
reduced_sol2≔v⁡s=ⅇ−s22+c__1
new_ode2≔eval⁡reduced_sol2,tr2
new_ode2≔ⅆⅆxy⁡x=ⅇ−x22+c__1
Solve⁡new_ode2,y⁡x
y⁡x=ⅇc__1⁢π⁢2⁢erf⁡2⁢x22+_C2
NoDependentVariable⁡ode2,solve
A third example:
ode3≔diff⁡y⁡x,x,x=exp⁡x⁢diff⁡y⁡x,x
ode3≔ⅆ2ⅆx2y⁡x=ⅇx⁢ⅆⅆxy⁡x
reduced_ode3,tr3≔NoDependentVariable⁡ode3
reduced_ode3,tr3≔ⅆⅆtu⁡t=ⅇt⁢u⁡t,t=x,u⁡t=ⅆⅆxy⁡x
reduced_sol3≔Solve⁡reduced_ode3,u⁡t
reduced_sol3≔u⁡t=ⅇⅇt+c__1
new_ode3≔eval⁡reduced_sol3,tr3
new_ode3≔ⅆⅆxy⁡x=ⅇⅇx+c__1
Solve⁡new_ode3,y⁡x
y⁡x=−ⅇc__1⁢Ei1⁡−ⅇx+_C2
NoDependentVariable⁡ode3,solve
The Student[ODEs][ReduceOrder][NoDependentVariable] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
dsolve
odeadvisor,missing
Student
Student[ODEs]
Student[ODEs][ReduceOrder][NoIndependentVariable]
Download Help Document