NoDependentVariable - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[ODEs][ReduceOrder]

  

NoDependentVariable

  

Reduce the order of an ODE missing the dependent variable

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

NoDependentVariable(ODE)

NoDependentVariable(ODE, y(x))

NoDependentVariable(ODE, y(x), u(t))

Parameters

ODE

-

ordinary differential equation missing the dependent variable

y

-

name; the dependent variable of the original ODE

x

-

name; the independent variable of the original ODE

u

-

name; the dependent variable for the reduced ODE

t

-

name; the independent variable for the reduced ODE

Description

• 

NoDependentVariable finds the solution of an ODE which doesn't contain the dependent variable other than in its derivatives.

• 

The second argument, y(x), representing the variable for the existing ODE, is optional. It must be given however, if the dependent and independent variables cannot be determined from the ODE.

• 

The third argument, u(t), representing the variable for the reduced ODE, is optional. If it is not given, new independent and dependent variables will be chosen which do not conflict with the existing variables.

• 

The default output is a sequence consisting of the reduced ODE in terms of the new variables, followed by the transformation used to recover the original ODE from the reduced ODE.

• 

If an extra option solve or solve=true is also given, an attempt is made to solve the reduced ODE and return the general solution to the original ODE. If successful, the general solution of the original ODE will be returned.

Examples

withStudentODEs:

withStudentODEsReduceOrder:

Given a 2nd order ODE for y(x) which doesn't depend on y(x):

odediffyx,x,x+diffyx,x2x=0

odeⅆ2ⅆx2yx+ⅆⅆxyx2x=0

(1)

Find a reduction of order to a 1st order ODE, and the associated transformation:

reduced_ode,trNoDependentVariableode

reduced_ode,trⅆⅆtut+ut2t=0,t=x,ut=ⅆⅆxyx

(2)

Solve the reduced order ODE:

reduced_solSolvereduced_ode,ut

reduced_solut=2t2+2_C1

(3)

Apply the transformation to find a simpler ODE for the original variable y(x):

new_odeevalreduced_sol,tr

new_odeⅆⅆxyx=2x2+2_C1

(4)

Solve the simpler ODE to find the general solution of the original ODE:

Solvenew_ode,yx

yx=2arctanhx22c__1_C2c__1c__1

(5)

Alternatively, the original ODE can be solved in a single step if we use the option solve:

NoDependentVariableode,solve

yx=2arctanhx22c__1c__1+_C2

(6)

Another example:

ode2diffyx,x,x+xdiffyx,x=0

ode2ⅆ2ⅆx2yx+xⅆⅆxyx=0

(7)

reduced_ode2,tr2NoDependentVariableode2,yx,vs

reduced_ode2,tr2ⅆⅆsvs+svs=0,s=x,vs=ⅆⅆxyx

(8)

reduced_sol2Solvereduced_ode2,vs

reduced_sol2vs=ⅇs22+c__1

(9)

new_ode2evalreduced_sol2,tr2

new_ode2ⅆⅆxyx=ⅇx22+c__1

(10)

Solvenew_ode2,yx

yx=ⅇc__1π2erf2x22+_C2

(11)

NoDependentVariableode2,solve

yx=ⅇc__1π2erf2x22+_C2

(12)

A third example:

ode3diffyx,x,x=expxdiffyx,x

ode3ⅆ2ⅆx2yx=ⅇxⅆⅆxyx

(13)

reduced_ode3,tr3NoDependentVariableode3

reduced_ode3,tr3ⅆⅆtut=ⅇtut,t=x,ut=ⅆⅆxyx

(14)

reduced_sol3Solvereduced_ode3,ut

reduced_sol3ut=ⅇⅇt+c__1

(15)

new_ode3evalreduced_sol3,tr3

new_ode3ⅆⅆxyx=ⅇⅇx+c__1

(16)

Solvenew_ode3,yx

yx=ⅇc__1Ei1ⅇx+_C2

(17)

NoDependentVariableode3,solve

yx=ⅇc__1Ei1ⅇx+_C2

(18)

Compatibility

• 

The Student[ODEs][ReduceOrder][NoDependentVariable] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

dsolve

odeadvisor,missing

Student

Student[ODEs]

Student[ODEs][ReduceOrder]

Student[ODEs][ReduceOrder][NoIndependentVariable]