BetaRandomVariable - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[Statistics]

  

BetaRandomVariable

  

beta random variable

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

BetaRandomVariable(nu, omega)

Parameters

nu

-

first shape parameter

omega

-

second shape parameter

Description

• 

The beta distribution is a continuous probability distribution with probability density function given by:

ft=0t<0t1+ν1t1+ωΒν&comma;ωt<10otherwise

  

subject to the following conditions:

0<ν,0<ω

• 

The beta random variable is related to the independent Gamma variates Gamma(1,nu) and Gamma(1,omega) by the formula Beta(nu,omega) ~ Gamma(1,nu)/(Gamma(1,nu)+Gamma(1,omega)).

Examples

withStudentStatistics&colon;

XBetaRandomVariableν&comma;ω&colon;

PDFX&comma;u

0u<0u1+ν1u1+ωΒν&comma;ωu<10otherwise

(1)

PDFX&comma;0.5

0.51.+ν0.51.+ωΒν&comma;ω

(2)

MeanX

νν+ω

(3)

VarianceX

νων+ω2ν+ω+1

(4)

YBetaRandomVariable4&comma;7&colon;

PDFY&comma;x&comma;output=plot

CDFY&comma;x

0x<0210x4hypergeom−6&comma;4&comma;5&comma;xx<11otherwise

(5)

CDFY&comma;0.5&comma;output=plot

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998.  Vol. 1: Distribution Theory.

Compatibility

• 

The Student[Statistics][BetaRandomVariable] command was introduced in Maple 18.

• 

For more information on Maple 18 changes, see Updates in Maple 18.

See Also

Statistics[Distributions][Beta]

Student

Student[Statistics]

Student[Statistics][RandomVariable]