Student[Statistics]
CauchyRandomVariable
Cauchy random variable
Calling Sequence
Parameters
Description
Examples
References
Compatibility
CauchyRandomVariable(a, b)
a
-
location parameter
b
scale parameter
The Cauchy random variable is a continuous probability random variable with probability density function given by:
f⁡t=1π⁢b⁢1+t−a2b2
subject to the following conditions:
a::real,0<b
The Cauchy random variable does not have any defined moments or cumulants.
The Cauchy variate Cauchy(a,b) is related to the standardized variate Cauchy(0,1) by Cauchy(a,b) ~ a + b * Cauchy(0,1).
The ratio of two independent unit Normal variates N and M is distributed according to the standard Cauchy variate: Cauchy(0,1) ~ N / M
The standard Cauchy variate Cauchy(0,1) is a special case of the StudentT variate with one degree of freedom: Cauchy(0,1) ~ StudentT(1).
with⁡StudentStatistics:
X≔CauchyRandomVariable⁡a,b:
PDF⁡X,u
1π⁢b⁢1+u−a2b2
PDF⁡X,0.5
0.3183098861b⁢1.+0.5−1.⁢a2b2
Mean⁡X
undefined
Variance⁡X
Y≔CauchyRandomVariable⁡6,10:
PDF⁡Y,x,output=plot
CDF⁡Y,x
12+arctan⁡x10−35π
CDF⁡Y,5,output=plot
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics.6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The Student[Statistics][CauchyRandomVariable] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
Statistics[Distributions][Cauchy]
Student
Student[Statistics][RandomVariable]
Download Help Document