Student[Statistics]
Kurtosis
compute the coefficient of kurtosis
Calling Sequence
Parameters
Description
Computation
Examples
References
Compatibility
Kurtosis(A, numeric_option)
Kurtosis(M, numeric_option)
Kurtosis(X, numeric_option, inert_option)
A
-
data sample
M
Matrix data sample
X
algebraic; random variable
numeric_option
(optional) equation of the form numeric=value where value is true or false
inert_option
(optional) equation of the form inert=value where value is true or false
The Kurtosis function computes the coefficient of kurtosis of the specified random variable or data sample. In the data sample case, the following formula for the kurtosis is used:
Kurtosis⁡A=N⁢Moment⁡A,4,origin=Mean⁡AN−1⁢Variance⁡A2,
where N is the number of elements in A. In the random variable case, Maple uses the limit of that formula for N↦∞, that is,
Kurtosis⁡X=Moment⁡X,4,origin=Mean⁡XVariance⁡X2.
There is a different quantity that some authors call kurtosis. This quantity is called excess kurtosis here. The excess kurtosis is not predefined in Maple, but it can be easily obtained by subtracting 3 from the kurtosis: ExcessKurtosis≔Kurtosis−3.
The first parameter can be a data sample (e.g., a Vector), a Matrix data sample, a random variable, or an algebraic expression involving random variables (see Student[Statistics][RandomVariable]).
If the option inert is not included or is specified to be inert=false, then the function will return the actual value of the result. If inert or inert=true is specified, then the function will return the formula of evaluating the actual value.
By default, all computations involving random variables are performed symbolically (see option numeric below).
If there are floating point values or the option numeric is included, then the computation is done in floating point. Otherwise the computation is exact.
By default, the kurtosis is computed according to the rules mentioned above. To always compute the kurtosis numerically, specify the numeric or numeric = true option.
with⁡StudentStatistics:
Compute the coefficient of kurtosis of the log normal distribution with parameters μ and σ.
Kurtosis⁡LogNormalRandomVariable⁡μ,σ
ⅇ8⁢σ2+4⁢μ−3⁢ⅇ2⁢σ2+4⁢μ−4⁢ⅇ5⁢σ2+4⁢μ+6⁢ⅇ3⁢σ2+4⁢μⅇσ2+2⁢μ2⁢ⅇσ2−12
Use numeric parameters for the beta distribution.
Kurtosis⁡BetaRandomVariable⁡3,5
711275
Kurtosis⁡BetaRandomVariable⁡3,5,numeric
2.585454546
Use the inert option.
Kurtosis⁡BetaRandomVariable⁡3,5,inert
∫01105⁢−_t2+∫01105⁢_t13⁢−1+_t14ⅆ_t14⁢_t22⁢−1+_t24ⅆ_t2∫01105⁢−_t0+∫01105⁢_t3⁢−1+_t4ⅆ_t2⁢_t02⁢−1+_t04ⅆ_t02
evalf⁡Kurtosis⁡BetaRandomVariable⁡3,5,inert
2.585454545
Consider the following list of data.
A≔1,2,π,exp⁡1.5,−3
A≔1,2,π,4.481689070,−3
Kurtosis⁡A
1.92292561031128
Consider the following Matrix data set.
M≔Matrix⁡3,1,11,4,1.5,28,3,ln⁡3,31,2,0,4,4,9.2,7
M≔311141.5283ln⁡33120449.27
We compute the kurtosis of each of the columns.
Kurtosis⁡M
3622452.519272430263041217684211966045
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The Student[Statistics][Kurtosis] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
kurtosis
Statistics[Kurtosis]
Student
Student[Statistics][RandomVariable]
Download Help Document