Student[Statistics]
StudentTRandomVariable
Student-t random variable
Calling Sequence
Parameters
Description
Examples
References
Compatibility
StudentTRandomVariable(nu)
nu
-
degrees of freedom
The Student-t distribution is a continuous probability random variable with probability density function given by:
f⁡t=Γ⁡ν2+12π⁢ν⁢Γ⁡ν2⁢1+t2νν2+12
subject to the following conditions:
0<ν
The StudentT variate is related to the Normal variate and the ChiSquare variate by the formula StudentT(nu) ~ Normal(0,1)/sqrt(ChiSquare(nu)/nu)
The StudentT variate with degrees of freedom 1 is related to the standard Cauchy variate by StudentT(1) ~ Cauchy(0,1).
with⁡StudentStatistics:
X≔StudentTRandomVariable⁡ν:
PDF⁡X,u
Γ⁡ν2+12π⁢ν⁢Γ⁡ν2⁢1+u2νν2+12
PDF⁡X,0.5
0.5641895835⁢Γ⁡0.5000000000⁢ν+0.5000000000ν⁢Γ⁡0.5000000000⁢ν⁢1.+0.25ν0.5000000000⁢ν+0.5000000000
Mean⁡X
undefinedν≤10otherwise
Variance⁡X
undefinedν≤2νν−2otherwise
Y≔StudentTRandomVariable⁡5:
PDF⁡Y,x,output=plot
CDF⁡Y,x
12+8⁢x⁢hypergeom⁡12,3,32,−x25⁢515⁢π
CDF⁡Y,3,output=plot
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The Student[Statistics][StudentTRandomVariable] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
Statistics[Distributions][StudentT]
Student
Student[Statistics][RandomVariable]
Download Help Document