Subfields - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Subfields

compute subfields of an extension field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Subfields(f,deg,K,x)

Parameters

f

-

polynomial or set of polynomials

deg

-

positive integer

K

-

set of RootOfs

x

-

variable

Description

• 

The Subfields function is a placeholder for representing a primitive description of an algebraic extension. It is used in conjunction with evala.

• 

Let f be an irreducible polynomial in K[x]. If f contains only one variable then x need not be specified, otherwise both K and x must be specified. If the argument K is not specified then K is the smallest extension of the rationals such that the coefficients of f are in K. If K is specified then the field K contains the RootOfs in this set as well. Let L be the field extension of K given by one single root of f. So L is not the splitting field; L = K[x]/(f) = K(RootOf(f,x). The call evala(Subfields(f, deg, K, x)) computes the set of all subfields of L over K of degree deg. Each subfield is given by a single RootOf of degree deg.

• 

A field K(R) where R is a RootOf is a subfield of L if and only if f has an irreducible factor g over K(R) such the degree of f equals the product of the degree of g and the degree of R.

• 

If f is not a polynomial but a set of polynomials then this procedure computes those subfields that the elements of f have in common. Each of these polynomials must be irreducible over K, otherwise this procedure may not work correctly.

Examples

evalaSubfieldsx4+1,2

RootOf_Z22,RootOf_Z2+1,RootOf_Z2+2

(1)

evalaSubfieldsx4+1,3

(2)

evalaSubfieldsx4+1,x4+2,2

RootOf_Z2+2

(3)

See Also

evala

RootOf