SumTools[DefiniteSum]
Definite
compute closed forms of definite sums
Calling Sequence
Parameters
Options
Description
Examples
References
Definite(f, k=m..n)
Definite(f, k=m..n, parametric, formal=b)
Definite(f, k=alpha)
Definite(f, k=expr)
f
-
expression; the summand
k
name; the summation index
m, n
expressions or integers; the summation bounds
parametric
(optional) literal name
b
(optional) true or false
alpha
RootOf expression
expr
expression not containing k
If the option parametric is specified, then Definite returns a result that is valid for all possible integer values of any parameters occurring in the summand or the summation bounds. In general, the result is expressed in terms of piecewise functions.
For a description of the formal option, see sum/details.
The Definite(f, k=m..n) command computes a closed form of the definite sum of f over the specified range of k.
The function is a combination of different algorithms. They include
the method of integral representation,
the method of first computing a closed form of the corresponding indefinite sum and then applying the discrete Newton-Leibniz formula,
the method of computing closed forms of definite sums of hypergeometric terms (see SumTools[Hypergeometric]), and
the method of first converting the given definite sum to hypergeometric functions, and then converting these hypergeometric functions to standard functions (if possible).
For more information, see sum.
with⁡SumToolsDefiniteSum:
F≔2+kk−2⁢1+n−kn−kk!⁢n−k!
Sum⁡F,k=0..n=Definite⁡F,k=0..n
∑k=0n⁡2+kk−2⁢1+n−kn−kk!⁢n−k!=3+nn4⁢n!−3+nn−16⁢n−1!
F≔binomial⁡2⁢n−2⁢k,n−k⁢24⁢k⁢2⁢k⁢2⁢k+1⁢binomial⁡2⁢k,k−1
F≔2⁢n−2⁢kn−k⁢24⁢k2⁢k⁢2⁢k+1⁢2⁢kk
Sum⁡F,k=1..n=Definite⁡F,k=1..n
∑k=1n⁡2⁢n−2⁢kn−k⁢24⁢k2⁢k⁢2⁢k+1⁢2⁢kk=−2⁢n−2n−1⁢8−16⁢n2⁢2⁢n+1
F≔binomial⁡2⁢n,2⁢k2
F≔2⁢n2⁢k2
∑k=0n⁡2⁢n2⁢k2=−1n⁢2⁢nn2+4⁢n2⁢n2
F≔22⁢kπ12⁢Γ⁡k−n⁢Γ⁡k+nΓ⁡2⁢k+1⁢zk
F≔22⁢k⁢Γ⁡−n+k⁢Γ⁡k+n⁢zkπ⁢Γ⁡2⁢k+1
Sum⁡F,k=0..∞=Definite⁡F,k=0..∞assumingabs⁡z≤1
∑k=0∞⁡22⁢k⁢Γ⁡−n+k⁢Γ⁡k+n⁢zkπ⁢Γ⁡2⁢k+1=−π⁢cos⁡2⁢n⁢arcsin⁡z⁢csc⁡π⁢nn
Parametric case discussions may be returned:
F≔binomial⁡2⁢k−3,k4k
F≔2⁢k−3k4k
Sum⁡F,k=0..n=Definite⁡F,k=0..n,parametric
∑k=0n⁡2⁢k−3k4k=2⁢n−1n⁢4+2⁢n4n+1n≤034n=12⁢n−1n⁢4+2⁢n4n+1+382≤n
Definite⁡1k,k=a..b
∑k=ab⁡1k
Definite⁡1k,k=a..b,parametric
0a=b+1Ψ⁡b+1−Ψ⁡a1≤aand0≤bΨ⁡−b−Ψ⁡1−aa≤0andb≤−1FAILotherwise
Sum over RootOf:
F≔t2+1t3−5⁢t+2
Definite⁡F,t=RootOf⁡x5+x+1
−269833
Egorychev, G.P. "Integral Representation and the Computation of Combinatorial Sums." Novosibirsk, Nauka. (1977). (in Russian); English: Translations of Mathematical Monographs. Vol. 59. American Mathematical Society. (1984).
Roach, K. "Hypergeometric Function Representations." Proceedings ISSAC 1996, pp. 301-308. New York: ACM Press, 1996.
van Hoeij, M. "Finite Singularities and Hypergeometric Solutions of Linear Recurrence Equations." Journal of Pure and Applied Algebra. Vol. 139. (1999): 109-131.
Zeilberger, D. "The Method of Creative Telescoping." Journal of Symbolic Computing. Vol. 11. (1991): 195-204.
See Also
sum
SumTools[DefiniteSum][CreativeTelescoping]
SumTools[DefiniteSum][pFqToStandardFunctions]
SumTools[DefiniteSum][Telescoping]
SumTools[IndefiniteSummation]
SumTools[Summation]
Download Help Document