Overview of the SumTools:-Hypergeometric Subpackage
Calling Sequence
Description
List of SumTools:-Hypergeometric Subpackage Commands
Examples
References
SumTools:-Hypergeometric:-command(arguments)
command(arguments)
The SumTools:-Hypergeometric subpackage provides tools for finding closed forms of definite and indefinite sums of hypergeometric type. It can also be used for certifying and proving combinatorial identities. The subpackage consists of three main components:
- Normal forms of rational functions and of hypergeometric terms: MultiplicativeDecomposition, PolynomialNormalForm, RationalCanonicalForm, SumDecomposition
- Algorithms for definite and indefinite sums of hypergeometric type: ExtendedGosper, ExtendedZeilberger, Gosper, IsZApplicable, KoepfGosper, KoepfZeilberger, LowerBound, MinimalZpair, Zeilberger, ZeilbergerRecurrence, ZpairDirect
- Applications: DefiniteSum, IndefiniteSum, WZMethod
Other commands that deal with hypergeometric terms include: AreSimilar, ConjugateRTerm, EfficientRepresentation, IsHolonomic, IsHypergeometricTerm, IsProperHypergeometricTerm, RegularGammaForm, Verify
Each command in the SumTools:-Hypergeometric subpackage can be accessed by using either the long form or the short form of the command name in the command calling sequence.
The long form, SumTools:-Hypergometric:-command, is always available. The short form can be used after loading the package.
The following is a list of available commands.
AreSimilar
BottomSequence
ConjugateRTerm
DefiniteSum
DefiniteSumAsymptotic
EfficientRepresentation
ExtendedGosper
ExtendedZeilberger
Gosper
IndefiniteSum
IsHolonomic
IsHypergeometricTerm
IsProperHypergeometricTerm
IsZApplicable
KoepfGosper
KoepfZeilberger
LowerBound
MinimalTelescoper
MinimalZpair
MultiplicativeDecomposition
PolynomialNormalForm
RationalCanonicalForm
RegularGammaForm
SumDecomposition
Verify
WZMethod
Zeilberger
ZeilbergerRecurrence
ZpairDirect
To display the help page for a particular Hypergeometric command, see Getting Help with a Command in a Package.
with⁡SumTools:-Hypergeometric
AreSimilar,BottomSequence,CanonicalRepresentation,ConjugateRTerm,DefiniteSum,DefiniteSumAsymptotic,EfficientRepresentation,ExtendedGosper,ExtendedZeilberger,Gosper,IndefiniteSum,IsHolonomic,IsHypergeometricTerm,IsProperHypergeometricTerm,IsZApplicable,KoepfGosper,KoepfZeilberger,LowerBound,MinimalTelescoper,MinimalZpair,MultiplicativeDecomposition,PolynomialNormalForm,RationalCanonicalForm,RegularGammaForm,SumDecomposition,Verify,WZMethod,Zeilberger,ZeilbergerRecurrence,ZpairDirect
Definite sum example:
T≔binomial⁡2⁢n,2⁢k2
T≔2⁢n2⁢k2
Sum⁡T,k=0..n=DefiniteSum⁡T,n,k,0..n
∑k=0n⁡2⁢n2⁢k2=−1n⁢2⁢nn2+4⁢n2⁢n2
Construct the Apery's recurrence.
T≔binomial⁡n,k2⁢binomial⁡n+k,k2
T≔nk2⁢n+kk2
lre≔ZeilbergerRecurrence⁡T,n,k,a,0..n
lre≔n3+3⁢n2+3⁢n+1⁢a⁡n+−34⁢n3−153⁢n2−231⁢n−117⁢a⁡n+1+n3+6⁢n2+12⁢n+8⁢a⁡n+2=0
Replace n by n−1 in lre.
collect⁡subs⁡n=n−1,lre,a⁡n+1,a⁡n,a⁡n−1,factor
n+13⁢a⁡n+1−2⁢n+1⁢17⁢n2+17⁢n+5⁢a⁡n+n3⁢a⁡n−1=0
The above recurrence equation is required in the proof of the irrationality of Zeta(3).
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings of ICMS'2002, pp. 319-329. World Scientific, 2002.
Le, H.Q.; Abramov, S.A.; and Geddes, K.O. "HypergeometricSum: A Maple Package for Finding Closed Forms of Indefinite and Definite Sums of Hypergeometric Type." Technical Report CS-2001-24. Ontario: Department of Computer Science, University of Waterloo, 2001.
See Also
help
LREtools
rsolve
sum
SumTools
UsingPackages
with
Download Help Document