Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Overview of the SumTools:-Hypergeometric Subpackage

 

Calling Sequence

Description

List of SumTools:-Hypergeometric Subpackage Commands

Examples

References

Calling Sequence

SumTools:-Hypergeometric:-command(arguments)

command(arguments)

Description

• 

The SumTools:-Hypergeometric subpackage provides tools for finding closed forms of definite and indefinite sums of hypergeometric type. It can also be used for certifying and proving combinatorial identities. The subpackage consists of three main components:

  

- Normal forms of rational functions and of hypergeometric terms: MultiplicativeDecomposition, PolynomialNormalForm, RationalCanonicalForm, SumDecomposition

  

- Algorithms for definite and indefinite sums of hypergeometric type: ExtendedGosper, ExtendedZeilberger, Gosper, IsZApplicable, KoepfGosper, KoepfZeilberger, LowerBound, MinimalZpair, Zeilberger, ZeilbergerRecurrence, ZpairDirect

  

- Applications: DefiniteSum, IndefiniteSum, WZMethod

• 

Other commands that deal with hypergeometric terms include: AreSimilar, ConjugateRTerm, EfficientRepresentation, IsHolonomic, IsHypergeometricTerm, IsProperHypergeometricTerm, RegularGammaForm, Verify

• 

Each command in the SumTools:-Hypergeometric subpackage can be accessed by using either the long form or the short form of the command name in the command calling sequence.

• 

The long form, SumTools:-Hypergometric:-command, is always available. The short form can be used after loading the package.

List of SumTools:-Hypergeometric Subpackage Commands

  

The following is a list of available commands.

AreSimilar

BottomSequence

ConjugateRTerm

DefiniteSum

DefiniteSumAsymptotic

EfficientRepresentation

ExtendedGosper

ExtendedZeilberger

Gosper

IndefiniteSum

IsHolonomic

IsHypergeometricTerm

IsProperHypergeometricTerm

IsZApplicable

KoepfGosper

KoepfZeilberger

LowerBound

MinimalTelescoper

MinimalZpair

MultiplicativeDecomposition

PolynomialNormalForm

RationalCanonicalForm

RegularGammaForm

SumDecomposition

Verify

WZMethod

Zeilberger

ZeilbergerRecurrence

ZpairDirect

 

 

 

  

To display the help page for a particular Hypergeometric command, see Getting Help with a Command in a Package.

Examples

withSumTools:-Hypergeometric

AreSimilar,BottomSequence,CanonicalRepresentation,ConjugateRTerm,DefiniteSum,DefiniteSumAsymptotic,EfficientRepresentation,ExtendedGosper,ExtendedZeilberger,Gosper,IndefiniteSum,IsHolonomic,IsHypergeometricTerm,IsProperHypergeometricTerm,IsZApplicable,KoepfGosper,KoepfZeilberger,LowerBound,MinimalTelescoper,MinimalZpair,MultiplicativeDecomposition,PolynomialNormalForm,RationalCanonicalForm,RegularGammaForm,SumDecomposition,Verify,WZMethod,Zeilberger,ZeilbergerRecurrence,ZpairDirect

(1)

Definite sum example:

Tbinomial2n,2k2

T2n2k2

(2)

SumT,k=0..n=DefiniteSumT,n,k,0..n

k=0n2n2k2=−1n2nn2+4n2n2

(3)

Construct the Apery's recurrence.

Tbinomialn,k2binomialn+k,k2

Tnk2n+kk2

(4)

lreZeilbergerRecurrenceT,n,k,a,0..n

lren3+3n2+3n+1an+34n3153n2231n117an+1+n3+6n2+12n+8an+2=0

(5)

Replace n by n1 in lre.

collectsubsn=n1,lre,an+1,an,an1,factor

n+13an+12n+117n2+17n+5an+n3an1=0

(6)

The above recurrence equation is required in the proof of the irrationality of Zeta(3).

References

  

Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings of ICMS'2002, pp. 319-329. World Scientific, 2002.

  

Le, H.Q.; Abramov, S.A.; and Geddes, K.O. "HypergeometricSum: A Maple Package for Finding Closed Forms of Indefinite and Definite Sums of Hypergeometric Type." Technical Report CS-2001-24. Ontario: Department of Computer Science, University of Waterloo, 2001.

See Also

help

LREtools

rsolve

sum

SumTools

UsingPackages

with