Hypergeometric[DefiniteSumAsymptotic] - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Calculus : Limits : Hypergeometric[DefiniteSumAsymptotic]

SumTools[Hypergeometric]

  

DefiniteSumAsymptotic

  

asymptotic expansion of a definite hypergeometric sum

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

DefiniteSumAsymptotic(T, n, k, l..u, f)

Parameters

T

-

algebraic expression representing a hypergeometric term of both n and k

n

-

name

k

-

name

l..u

-

range for k

f

-

(optional) unevaluated name

Description

• 

For a hypergeometric term T of n and k over the real number field, the DefiniteSumAsymptotic(T,n,k,l..u) command computes the asymptotic expansion of the definite sum Sn=k=luT with respect to the variable n (as n approaches ), where l=rn+s and u=tn+v for some real numbers r, s, t, v.

• 

The routine returns an error if  T does not satisfy the following conditions for all large enough n and for all k in the range l..u:

1. 

T is defined;

2. 

T has constant sign.

• 

In trivial cases (for example, when T is a rational function in k and polynomial in n) the procedure returns an asymptotic expansion of Sn with a truncation order specified by the global variable Order. Otherwise, if possible, the procedure returns the main part of an asymptotic expansion of the form:

SgnnC0n+C1na1+...+CmnamnD ⅇQn1b1+O1nc

  

or

SgnnC0n+C1na1+...+CmnamnD ⅇQn1b1+O1

  

or

SgnnC0n+C1na1+...+CmnamnD ⅇQn1b1+On

  

where

– 

Sgn is 1 or -1,

– 

C0, C1, ..., Cm, D  are constants,

– 

a1, ..., am are positive rational numbers 1,

– 

c is a positive rational number,

– 

b is a positive integer, and

– 

Q is a polynomial of degree b.

• 

The procedure can compute the asymptotics of most frequently used binomial sums. In case it cannot compute one, it returns FAIL.

• 

If the optional argument f is specified, the input is not trivial, and the main part of the asymptotic expansion was computed to be O1nc, then f will be assigned an auxiliary procedure. This procedure computes approximate values for the next coefficients in the asymptotic expansion, by treating an experimental sample for large n statistically, using the least-squares method.

• 

The procedure assigned to f returns a sequence of two elements. The first element is the asymptotic expansion, which contains placeholder names _s1, _s2, ... The second element is a list of equations _s1=s1, _s2=s2, ... where s1, s2, ... are floating-point numbers approximating the values of _s1, _s2, ...

• 

The typical calling sequence of the auxiliary procedure is fn0,n1,h,q, where

1. 

n0 is a lower bound for the samples w.r.t. n;

2. 

n1 is an upper bound for the samples w.r.t. n;

3. 

h is the step size for the samples w.r.t. n;

4. 

q is the desired number of coefficients _si.

  

These parameters should satisfy the following constraints:

– 

100n0,

– 

h is a positive integer,

– 

n0+10hn1, and

– 

3q.

  

The recommended values for the parameters are 1000n0, 2n0n1,  h=10; q=3 if c=1 and q=6 if c<1. By default, calling f without arguments is equivalent to f1000&comma;2000&comma;10&comma;3.

• 

If there is a conjecture for an exact value s1 of _s1, then fn0&comma;n1&comma;h&comma;q&comma;s1 computes approximate values for the subsequent coefficients. Similarly, it is possible to call fn0&comma;n1&comma;h&comma;q&comma;s1&comma;s2, fn0&comma;n1&comma;h&comma;q&comma;s1&comma;s2&comma;s3, etc.

• 

Note that the value of Digits controls only the working precision, i.e., the number of digits that f uses when it calculates the experimental sample and runs the least-squares method. The accuracy of s1, s2, ... can be increased by calling f with higher values of n0, n1, and Digits. Generally, the values si are less accurate the higher the index i is.

Examples

withSumToolsHypergeometric&colon;

DefiniteSumAsymptoticbinomialn&comma;k&comma;n&comma;k&comma;0..n

2n1+O1n

(1)

DefiniteSumAsymptoticbinomial2n&comma;nkk&comma;n&comma;k&comma;0..n

On2n2

(2)

Tbinomial2n&comma;2k3&colon;

DefiniteSumAsymptoticT&comma;n&comma;k&comma;0..n&comma;f

64n31+O1n6πn

(3)

resf

res64n31+_s1n+_s122+_s2n2+_s3+_s1_s2+16_s13n3+O1n46πn,_s1=−0.1666666667&comma;_s2=−0.004629630518&comma;_s3=0.001544419223

(4)

convertres21&comma;rational&comma;9

_s1=16

(5)

Digits20&colon;

resf1000&comma;2000&comma;10&comma;3&comma;16

res64n3116n+172+_s1n2+_s2_s1611296n3+_s316_s2+172_s1+12_s12+131104n4+O1n56πn,_s1=−0.0046296296295318913642&comma;_s2=0.0015432094765491628609&comma;_s3=0.00053636958191821916288

(6)

convertres21&comma;rational&comma;10

_s1=1216

(7)

SumT&comma;k=0..n=evalevalres1&comma;&comma;res2

k=0n2n2k3=64n3116n+1108n2+0.0015432094765491628609n3+0.00025773453198581410444n4+O1n56πn

(8)

References

  

Ryabenko, A.A., and Skorokhodov, S.L. "Asymptotics of Sums of Hypergeometric Terms." Programming and Computer Software. Vol. 31, (2005): 65-72.

See Also

asympt

eulermac

LinearAlgebra[LeastSquares]

SumTools[Hypergeometric]

SumTools[Hypergeometric][DefiniteSum]