SumTools[Hypergeometric]
ExtendedZeilberger
construct a minimal Z-pair
Calling Sequence
Parameters
Description
Examples
References
ExtendedZeilberger(V, n, k, En)
V
-
definite sum of hypergeometric term
n
name
k
En
name denoting the shift operator with respect to n
Let T⁡m,k be a hypergeometric term of m and k. Let V⁡n,k=∑m=−n+bn+d⁡T⁡m,k where b and d are integers. The ExtendedZeilberger(V, n, k, En) command, an extension to Zeilberger's algorithm, constructs the minimal Z-pair for V⁡n,k provided that it exists.
It can be shown that a Z-pair for V⁡n,k exists if and only if a Z-pair for the hypergeometric term T⁡n,k exists.
with⁡SumToolsHypergeometric:
T≔−1k⁢binomial⁡m,k⁢binomial⁡2⁢k,k⋅122⁢k
T≔−1k⁢mk⁢2⁢kk22⁢k
V≔Sum⁡T,m=0..n
V≔∑m=0n⁡−1k⁢mk⁢2⁢kk22⁢k
ExtendedZeilberger⁡V,n,k,En
2⁢n+4⁢En2+−4⁢n−7⁢En+2⁢n+3,2⁢k2⁢−1k⁢n+1k⁢2⁢kk−n+k−2⁢22⁢k
_EnvDoubleSum≔true
Sum⁡V,k=0..n=DefiniteSum⁡V,n,k,0..n
∑k=0n⁡∑m=0n⁡−1k⁢mk⁢2⁢kk22⁢k=2⁢n+1⁢2⁢nn4n
Try the Maple command sum:
sum⁡sum⁡T,m=0..n,k=0..n
4−n⁢n+1⁢2⁢n+1n+∑k=0n⁡2⁢sin⁡π⁢k⁢−1k⁢4−k⁢2⁢k−1k−1π⁢k+1
Le, H.Q. "Computing the Minimal Telescoper for Sums of Hypergeometric Terms." SIGSAM Bulletin: Communications on Computer Algebra. Vol. 35 No. 3. (2001): 2-10.
See Also
sum
SumTools[Hypergeometric][DefiniteSum]
SumTools[Hypergeometric][IsZApplicable]
SumTools[Hypergeometric][Zeilberger]
SumTools[Hypergeometric][ZeilbergerRecurrence]
Download Help Document