ExtendedZeilberger - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

ExtendedZeilberger

  

construct a minimal Z-pair

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ExtendedZeilberger(V, n, k, En)

Parameters

V

-

definite sum of hypergeometric term

n

-

name

k

-

name

En

-

name denoting the shift operator with respect to n

Description

• 

Let Tm,k be a hypergeometric term of m and k. Let Vn,k=m=n+bn+dTm,k where b and d are integers. The ExtendedZeilberger(V, n, k, En) command, an extension to Zeilberger's algorithm, constructs the minimal Z-pair for Vn,k provided that it exists.

• 

It can be shown that a Z-pair for Vn,k exists if and only if a Z-pair for the hypergeometric term Tn,k exists.

Examples

withSumToolsHypergeometric:

T1kbinomialm,kbinomial2k,k122k

T−1kmk2kk22k

(1)

VSumT,m=0..n

Vm=0n−1kmk2kk22k

(2)

ExtendedZeilbergerV,n,k,En

2n+4En2+4n7En+2n+3,2k2−1kn+1k2kkn+k222k

(3)

_EnvDoubleSumtrue

_EnvDoubleSumtrue

(4)

SumV,k=0..n=DefiniteSumV,n,k,0..n

k=0nm=0n−1kmk2kk22k=2n+12nn4n

(5)

Try the Maple command sum:

sumsumT,m=0..n,k=0..n

4nn+12n+1n+k=0n2sinπk−1k4k2k1k1πk+1

(6)

References

  

Le, H.Q. "Computing the Minimal Telescoper for Sums of Hypergeometric Terms." SIGSAM Bulletin: Communications on Computer Algebra. Vol. 35 No. 3. (2001): 2-10.

See Also

sum

SumTools[Hypergeometric][DefiniteSum]

SumTools[Hypergeometric][IsZApplicable]

SumTools[Hypergeometric][Zeilberger]

SumTools[Hypergeometric][ZeilbergerRecurrence]