Gosper - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

Gosper

  

perform indefinite hypergeometric summation

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Gosper(T, n, r)

Parameters

T

-

hypergeometric term of n

n

-

variable

r

-

(optional) name

Description

• 

The Gosper(T,n,r) command solves the problem of indefinite hypergeometric summation, that is, for the given hypergeometric term T of n, it constructs another hypergeometric term G of n such that Tn=Gn+1Gn, provided that such a term exists. Otherwise, the function returns the error message "no solution found".

• 

If the third optional argument r is specified, it is assigned the rational function rn such that Gn=rnTn if G was computed successfully, and FAIL otherwise.

Examples

withSumToolsHypergeometric:

T4nn4binomial2n,n

T4nn42nn

(1)

GosperT,n

2n163n4140n3+60n2+26n64n6932nn

(2)

TProductj3,j=1..n1Productj3+1,j=1..n

Tj=1n1j3j=1nj3+1

(3)

GosperT,n,r

n+1I32n+1I3+2n1j=1n1j34j=1nj3+1

(4)

r

n+1I32n+1I3+2n14

(5)

No hypergeometric solution found:

Tn2binomial2n,n

Tn22nn

(6)

GosperT,n,r

Error, (in SumTools:-Hypergeometric:-Gosper) no solution found

r

FAIL

(7)

References

  

Gosper, R.W., Jr. "Decision procedure for indefinite hypergeometric summation." Proc. Natl. Acad. Sci. USA. Vol. 75. (1977): 40-42.

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][ExtendedGosper]

SumTools[Hypergeometric][PolynomialNormalForm]

SumTools[Hypergeometric][SumDecomposition]

SumTools[Hypergeometric][Zeilberger]

SumTools[IndefiniteSum][AccurateSummation]