SumTools[Hypergeometric]
IsHolonomic
test if a given bivariate hypergeometric term is holonomic
IsProperHypergeometricTerm
test if a given bivariate hypergeometric term is proper
Calling Sequence
Parameters
Description
Examples
References
IsHolonomic(T, n, k)
IsProperHypergeometricTerm(T, n, k)
T
-
hypergeometric term of n and k
n
variable
k
The IsProperHypergeometricTerm(T,n,k) command returns true if T⁡n,k is a proper hypergeometric term. Otherwise, it returns false.
The IsHolonomic(T,n,k) command returns true if the bivariate hypergeometric term T⁡n,k is holonomic. Otherwise, it returns false.
A bivariate hypergeometric term T⁡n,k is proper if it can be written as T⁡n,k=P⁡n,k⁢Tp⁡n,k where P⁡n,k is a polynomial of n and k, and Tp⁡n,k=un⁢vk⁢∏i=1l⁡bi⁢k+ai⁢n+gi!∏i=1m⁡api+bpi+gpi!, ai,bi,api,bpi are integers, and l,m are non-negative integers, gi,gpi,u,v are complex numbers.
It can be shown that T⁡n,k is proper if and only if it is holonomic.
Note: If T⁡n,k is a proper hypergeometric term, the termination of Zeilberger's algorithm is guaranteed.
with⁡SumToolsHypergeometric:
T≔−4−k−4⁢n−1−k−4⁢n+3−k−4⁢n−2−k−4⁢n⁢−1k⁢binomial⁡n+1,k⁢binomial⁡2⁢n−2⁢k+1,n
T≔−4−k−4⁢n−1−k−4⁢n+3−k−4⁢n−2−k−4⁢n⁢−1k⁢n+1k⁢2⁢n−2⁢k+1n
ConjugateRTerm1⁡T,n,k,listform
−2π,n−k!⁢k+4⁢n!⁢−14k⁢4n⁢n−k+12!⁢n+1!n+1−k!⁢2+k+4⁢n!⁢k!⁢n−2⁢k+1!⁢n!
IsProperHypergeometricTerm⁡T,n,k
true
T≔−48−94⁢n+10⁢k5−5⁢n+k⁢9133⁢−1k⁢binomial⁡n+1,k⁢binomial⁡2⁢n−2⁢k+1,n
T≔−48−94⁢n+10⁢k⁢−1k⁢n+1k⁢2⁢n−2⁢k+1n5−5⁢n+k⁢9133
−14585⁢π⁢5⁢923⁢n−5⁢923−9⁢k3,24+47⁢n−5⁢k!⁢n−k!⁢−14k⁢4n⁢n−k+12!⁢n+1!23+47⁢n−5⁢k!⁢n+1−k!⁢k!⁢n−2⁢k+1!⁢n!
false
Abramov, S.A., and Petkovsek, M. "Proof of a Conjecture of Wilf and Zeilberger." Preprint series. Vol. 39. (2001): 748. University of Ljubljana, ISSN 1318--4865.
See Also
SumTools[Hypergeometric][ConjugateRTerm]
SumTools[Hypergeometric][IsHypergeometricTerm]
SumTools[Hypergeometric][Zeilberger]
Download Help Document