SumTools[Hypergeometric]
MinimalZpair
compute the minimal Z-pair
MinimalTelescoper
compute the minimal telescoper
Calling Sequence
Parameters
Description
Examples
References
MinimalZpair(T, n, k, En)
MinimalTelescoper(T, n, k, En)
T
-
hypergeometric term of n and k
n
name
k
En
name; denote the shift operator with respect to n
For a specified hypergeometric term T⁡n,k of n and k, MinimalZpair(T, n, k, En) constructs for T⁡n,k the minimal Z-pair L,G; MinimalTelescoper(T, n, k, En) constructs for T⁡n,k the minimal telescoper L.
L and G satisfy the following properties:
1. L is a linear recurrence operator in En with polynomial coefficients in n.
2. G is a hypergeometric term of n and k.
3. L⁢T=Ek−1⁢G, where Ek denotes the shift operator with respect to k.
4. The order of L w.r.t. En is minimal.
The execution steps of MinimalZpair can be described as follows.
1. Determine the applicability of Zeilberger's algorithm to T⁡n,k.
2. If it is proven in Step 1 that a Z-pair for T⁡n,k does not exist, return the conclusive error message ``Zeilberger's algorithm is not applicable''. Otherwise,
a. If T⁡n,k is a rational function in n and k, apply the direct algorithm to compute the minimal Z-pair for T⁡n,k.
b. If T⁡n,k is a nonrational term, first compute a lower bound u for the order of the telescopers for T⁡n,k. Then compute the minimal Z-pair using Zeilberger's algorithm with u as the starting value for the guessed orders.
For case 2b, since the term T2 in the additive decomposition T1,T2 of T is ``simpler'' than T in some sense, we first apply Zeilberger's algorithm to T2 to obtain the minimal Z-pair L,G for T2. It is easy to show that L,LT1+G is the minimal Z-pair for the input term T.
with⁡SumToolsHypergeometric:
Case 1: Zeilberger's algorithm is not applicable to the input term T.
T≔−1k⋅1n⁢k+1⁢binomial⁡n+1,k⁢binomial⁡2⁢n−2⁢k−1,n−1
T≔−1k⁢n+1k⁢2⁢n−2⁢k−1n−1n⁢k+1
MinimalZpair⁡T,n,k,En
Error, (in SumTools:-Hypergeometric:-MinimalZpair) Zeilberger's algorithm is not applicable
Case 2a: Rational Function
T≔13⁢n+20⁢k+23
En20−1,13⁢n+42+20⁢k3+13⁢n+20⁢k+223+13⁢n+20⁢k+23
Case 2b: Hypergeometric
T≔1n⁢k+1−1⁢n−2⁢k−4⁢2⁢n+k+4!−1n⁢k−1⁢n−2⁢k−2⁢2⁢n+k+3!+1n−2⁢k−2⁢2⁢n+k+3!
T≔1n⁢k+1−1⁢n−4−2⁢k⁢2⁢n+k+4!−1n⁢k−1⁢n−2⁢k−2⁢2⁢n+k+3!+1n−2⁢k−2⁢2⁢n+k+3!
Zpair≔MinimalZpair⁡T,n,k,En:
Zpair1
−1953125⁢n9−44140625⁢n8−438125000⁢n7−2505718750⁢n6−9095640625⁢n5−21719685625⁢n4−34096450250⁢n3−33905768600⁢n2−19362572120⁢n−4833216960⁢En3+1953125⁢n9+42187500⁢n8+400625000⁢n7+2194468750⁢n6+7637609375⁢n5+17505613750⁢n4+26405971500⁢n3+25257742600⁢n2+13888257120⁢n+3340995840⁢En2+20000⁢n4+152000⁢n3+422400⁢n2+508160⁢n+223232⁢En−20000⁢n4−232000⁢n3−998400⁢n2−1888960⁢n−1325792
T≔1n2+9⁢n⁢k−4⁢n−22⁢k2+21⁢k−5
T≔1−22⁢k2+9⁢n⁢k+n2+21⁢k−4⁢n−5
MinimalTelescoper⁡T,n,k,En
−13⁢n−1+−14−13⁢n⁢En+144+13⁢n⁢En11+157+13⁢n⁢En12
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings ICMS'2002, pp. 319- 329. World Scientific, 2002.
See Also
SumTools[Hypergeometric][IsZApplicable]
SumTools[Hypergeometric][LowerBound]
SumTools[Hypergeometric][Zeilberger]
SumTools[Hypergeometric][ZpairDirect]
Download Help Document