SumTools[Hypergeometric]
PolynomialNormalForm
construct the polynomial normal form of a rational function
Calling Sequence
Parameters
Description
Examples
References
PolynomialNormalForm(F, n)
F
-
rational function of n
n
variable
Let F be a rational function of n over a field K of characteristic 0. The PolynomialNormalForm(F,n) command constructs the polynomial normal form for F.
The output is a sequence of 4 elements z,a,b,c where z is an element of K, and a,b,c are monic polynomials over K such that: F=z⁢a⁢E⁡cb⁢c. gcd⁡a,Ek⁡b=1⁢for all⁢non−negative integers⁢k. gcd⁡a,c=1,gcd⁡b,E⁡c=1.
Note: E is the automorphism of K(n) defined by {E(F(n)) = F(n+1)}.
with⁡SumToolsHypergeometric:
F≔32⁢n⁢n+2⁢3⁢n+2⁢3⁢n+4n−1⁢2⁢n+9⁢n+42
F≔3⁢n⁢n+2⁢3⁢n+2⁢3⁢n+42⁢n−1⁢2⁢n+9⁢n+42
z,a,b,c≔PolynomialNormalForm⁡F,n
z,a,b,c≔274,n+2⁢n+23⁢n+43,n+92⁢n+42,n−1
Check the results.
Condition 1 is satisfied.
evalb⁡F=normal⁡z⁢ab⁢subs⁡n=n+1,cc
true
Condition 2 is satisfied.
LREtoolsdispersion⁡b,a,n
FAIL
Condition 3 is satisfied.
gcd⁡a,c,gcd⁡b,subs⁡n=n+1,c
1,1
Gosper, R.W., Jr. "Decision procedure for indefinite hypergeometric summation." Proc. Natl. Acad. Sci. USA. Vol. 75. (1977): 40-42.
Petkovsek, M. "Hypergeometric solutions of linear recurrences with polynomial coefficients." J. Symb. Comput. Vol. 14. (1992): 243-264.
See Also
evalb
LREtools[dispersion]
subs
SumTools[Hypergeometric][Gosper]
SumTools[Hypergeometric][RationalCanonicalForm]
Download Help Document