SumTools[Hypergeometric]
WZMethod
perform Wilf-Zeilberger's algorithm
Calling Sequence
Parameters
Description
Examples
References
WZMethod(f,r,n,k,cert)
f
-
function of n and k
r
function of n
n
variable
k
cert
(optional) name; assigned the computed WZ certificate
The WZMethod(f,r,n,k,cert) command certifies identities of the form ∑k⁡f⁡n,k=r⁡n.
Let F⁡n,k=f⁡n,kr⁡n if r⁡n≠0 and F⁡n,k=f⁡n,k, otherwise. If the method succeeds in certifying the given identity, the output is a list of two elements F,G representing the WZ-pair F,G such that F⁡n+1,k−F⁡n,k=G⁡n,k+1−G⁡n,k. Otherwise, it returns the error message "WZ method fails".
If the method is successful and if the fifth optional argument cert is given, cert is assigned the WZ certificate R⁡n,k=G⁡n,kF⁡n,k.
It is assumed that for each integer 0≤n, limk→∞⁡G⁡n,k=0 and limk→−∞⁡G⁡n,k=0.
with⁡SumToolsHypergeometric:
Proof of Gauss's 2F1 identity:
f≔n+k!⁢b+k!⁢c−n−1!⁢c−b−1!c+k!⁢n−1!⁢c−n−b−1!⁢k+1!⁢b−1!
r≔1
WZpair≔WZMethod⁡f,r,n,k,cert:
F≔WZpair1
F≔n+k!⁢b+k!⁢c−n−1!⁢c−b−1!c+k!⁢n−1!⁢c−n−b−1!⁢k+1!⁢b−1!
G≔WZpair2
G≔−c−n−2−b!⁢n!⁢n+k!⁢c−n−1!−c−n−2!⁢n+1+k!⁢n−1!⁢c−n−b−1!⁢b+k!⁢c−b−1!⁢c+k⁢k+1c−n−b−1!⁢n−1!⁢b−1!⁢k+1!⁢c−n−2−b!⁢n!⁢c+k!⁢b⁢k+b⁢n−c⁢k+n⁢k+b−c+k+n+1
−k+1⁢c+kc−n−1⁢n
Proof of Dixon's identity:
F≔−1k⁢binomial⁡n+b,n+k⁢binomial⁡n+c,c+k⁢binomial⁡b+c,b+k
F≔−1k⁢n+bn+k⁢n+cc+k⁢b+cb+k
r≔n+b+c!n!⁢b!⁢c!
WZpair≔WZMethod⁡F,r,n,k,certificate:
F≔−1k⁢n+bn+k⁢n+cc+k⁢b+cb+k⁢n!⁢b!⁢c!n+b+c!
G≔−n+1+bn+1+k⁢n+1+cc+k⁢n+1!⁢n+b+c!−n+1+b+c!⁢n+bn+k⁢n+cc+k⁢n!⁢c!⁢b!⁢b+cb+k⁢−1k⁢c+k⁢n+1+k⁢b+k2⁢n+b+c!⁢n+1+b+c!⁢b⁢c⁢n+b⁢k2+c⁢k2+k2⁢n+b⁢c+k2
certificate
c+k⁢b+k2⁢−n+k−1⁢n+1+b+c
Wilf, H., and Zeilberger, D. "Rational function certify combinatorial identities." J. Amer. Math. Soc. Vol. 3. (1990): 147-158.
See Also
limit
Sum
SumTools[Hypergeometric][Gosper]
Download Help Document