VariationalCalculus
Convex
determine whether an integrand is convex
Calling Sequence
Parameters
Description
Examples
Convex(f, t, x(t))
f
-
expression in t, x(t), and x'(t)
t
independent variable
x(t)
unknown function (or list of functions)
The Convex(f, t, x(t)) command determines if the integrand is convex.
If the integrand is convex, the functional J=∫abf⁡t,x,x,'⁢ⅆt is globally minimized by extremals (solutions of the Euler-Lagrange equations).
For a convex integrand, the output is an expression sequence containing two items:
Hessian matrix ∂2∂x⁢∂x'⁢f
Logical expression that is true iff the Hessian is positive semidefinite, which proves that J is a minimum
If the integrand is not convex, Maple returns false.
If LinearAlgebra[IsDefinite] cannot determine the convexity, the output is an expression sequence containing two items:
unevaluated call to IsDefinite
If an error occurs in the execution of LinearAlgebra[IsDefinite], only the Hessian matrix is returned.
The arithmetic negation makes the Hessian negative semidefinite.
with⁡VariationalCalculus
ConjugateEquation,Convex,EulerLagrange,Jacobi,Weierstrass
f≔diff⁡x⁡t,t2+diff⁡y⁡t,t212
f≔ⅆⅆtx⁡t2+ⅆⅆty⁡t2
Convex⁡f,t,x⁡t,y⁡t
0000000000−ⅆⅆtx⁡t2ⅆⅆtx⁡t2+ⅆⅆty⁡t232+1ⅆⅆtx⁡t2+ⅆⅆty⁡t2−ⅆⅆtx⁡t⁢ⅆⅆty⁡tⅆⅆtx⁡t2+ⅆⅆty⁡t23200−ⅆⅆtx⁡t⁢ⅆⅆty⁡tⅆⅆtx⁡t2+ⅆⅆty⁡t232−ⅆⅆty⁡t2ⅆⅆtx⁡t2+ⅆⅆty⁡t232+1ⅆⅆtx⁡t2+ⅆⅆty⁡t2,0≤1ⅆⅆtx⁡t2+ⅆⅆty⁡t2
See Also
LinearAlgebra[IsDefinite]
VariationalCalculus[EulerLagrange]
Download Help Document