VariationalCalculus
EulerLagrange
construct the Euler-Lagrange equations
Calling Sequence
Parameters
Description
Examples
EulerLagrange(f, t, x(t))
f
-
expression in t, x(t), and x'(t)
t
independent variable
x(t)
unknown function (or list of functions)
The EulerLagrange(f, t, x(t)) command computes the Euler-Lagrange equations of a functional J=∫abf⁡t,x⁡t,x'⁡t⁢ⅆt subject to x⁡a=A and x⁡b=B.
In general, the Euler-Lagrange equations are not independent.
The Euler-Lagrange equations are returned as expressions.
If they can be calculated, the trivial first integrals are also returned.
The first integrals are set equal to generated global indexed variables Ki that denote arbitrary constants.
For higher-order functionals, for example, f(t, y(t), y'(t), y''(t)), use variables to represent derivatives. For example, set x1(t) = y(t) and x2(t)=y'(t), and then determine the Euler-Lagrange equations of the functional f + L*( x1'(t) - x2(t) )^2. To find the equations for the higher-order problem, substitute x2(t) = x1'(t) into the result.
with⁡VariationalCalculus
ConjugateEquation,Convex,EulerLagrange,Jacobi,Weierstrass
Geodesics in the plane
f≔diff⁡x⁡t,t2+diff⁡y⁡t,t212
f≔ⅆⅆtx⁡t2+ⅆⅆty⁡t2
EulerLagrange⁡f,t,x⁡t,y⁡t
ⅆⅆtx⁡t⁢2⁢ⅆⅆtx⁡t⁢ⅆ2ⅆt2x⁡t+2⁢ⅆⅆty⁡t⁢ⅆ2ⅆt2y⁡t2⁢ⅆⅆtx⁡t2+ⅆⅆty⁡t232−ⅆ2ⅆt2x⁡tⅆⅆtx⁡t2+ⅆⅆty⁡t2,ⅆⅆty⁡t⁢2⁢ⅆⅆtx⁡t⁢ⅆ2ⅆt2x⁡t+2⁢ⅆⅆty⁡t⁢ⅆ2ⅆt2y⁡t2⁢ⅆⅆtx⁡t2+ⅆⅆty⁡t232−ⅆ2ⅆt2y⁡tⅆⅆtx⁡t2+ⅆⅆty⁡t2,ⅆⅆtx⁡tⅆⅆtx⁡t2+ⅆⅆty⁡t2=K1,ⅆⅆty⁡tⅆⅆtx⁡t2+ⅆⅆty⁡t2=K2,ⅆⅆtx⁡t2+ⅆⅆty⁡t2−ⅆⅆtx⁡t2ⅆⅆtx⁡t2+ⅆⅆty⁡t2−ⅆⅆty⁡t2ⅆⅆtx⁡t2+ⅆⅆty⁡t2=K3
Brachistochrone
g≔1+diff⁡y⁡t,t212y⁡t12
g≔1+ⅆⅆty⁡t2y⁡t
EulerLagrange⁡g,t,y⁡t
−1+ⅆⅆty⁡t22⁢y⁡t32+ⅆⅆty⁡t2⁢ⅆ2ⅆt2y⁡t1+ⅆⅆty⁡t232⁢y⁡t+ⅆⅆty⁡t22⁢1+ⅆⅆty⁡t2⁢y⁡t32−ⅆ2ⅆt2y⁡t1+ⅆⅆty⁡t2⁢y⁡t,1+ⅆⅆty⁡t2y⁡t−ⅆⅆty⁡t21+ⅆⅆty⁡t2⁢y⁡t=K1
See Also
dsolve
solve
Download Help Document