WeierstrassP
The Weierstrass P function, P(z,g2,g3)
WeierstrassPPrime
The Derivative of the Weierstrass P function, P'(z,g2,g3)
WeierstrassZeta
The Weierstrass zeta function, zeta(z,g2,g3)
WeierstrassSigma
The Weierstrass sigma function, sigma(z,g2,g3)
Calling Sequence
Parameters
Description
Examples
WeierstrassP(z, g2, g3)
WeierstrassPPrime(z, g2, g3)
WeierstrassZeta(z, g2, g3)
WeierstrassSigma(z, g2, g3)
z
-
algebraic expression
g2, g3
algebraic expressions (invariants)
WeierstrassP (Weierstrass elliptic function), WeierstrassPPrime, WeierstrassZeta, and WeierstrassSigma are defined by
WeierstrassP⁡z,g2,g3=1z2+∑ω⁡1z−ω2−1ω2
WeierstrassPPrime⁡z,g2,g3=∂∂zWeierstrassP⁡z,g2,g3
=−2z3−2⁢∑ω⁡1z−ω3
WeierstrassZeta⁡z,g2,g3=−∫0zWeierstrassP⁡t,g2,g3ⅆt
=1z+∑ω⁡1z−ω+1ω+zω2
WeierstrassSigma⁡z,g2,g3=ⅇ∫0zWeierstrassZeta⁡t,g2,g3ⅆt
=z⁢∏ω⁡1−zω⁢ⅇzω+z22⁢ω2
where sums and products range over ω=2⁢m1⁢ω1+2⁢m2⁢ω2 such that m1,m2 is in Z⁢x⁢Z−0,0. WeierstrassP and WeierstrassPPrime are elliptic functions (also known as doubly periodic functions) with periods 2⁢ω1 and 2⁢ω2.
Quantities g2 and g3 are known as the invariants and are related to ω1 and ω2 by
g2=60⁢∑ω⁡1ω4
g3=140⁢∑ω⁡1ω6
where sums range over ω=2⁢m1⁢ω1+2⁢m2⁢ω2 such that m1,m2 is in Z⁢x⁢Z−0,0.
An important property of the invariants g2 and g3 is that WeierstrassP satisfies the differential equation
WeierstrassPPrime⁡z,g2,g32=4⁢WeierstrassP⁡z,g2,g33−g2⁢WeierstrassP⁡z,g2,g3−g3
A special case of WeierstrassP happens when the discriminant g23−27⁢g32 is equal to zero, in which case g2 and g3 are related, can be expressed in terms of a single parameter, say t, and the function is given by
WeierstrassP⁡z,3⁢t2,t3=−t2+3⁢t⁢csc⁡z⁢6⁢t222
Refer to Chapter 18, "Weierstrass Elliptic and Related Functions" of Handbook of Mathematical Functions edited by Abramowitz and Stegun for more extensive information.
WeierstrassP⁡1.0,2.0,3.0
1.214433709
WeierstrassPPrime⁡1.0,2.0,3.0
−1.317406195
WeierstrassZeta⁡1.0,2.0,3.0
0.9443449465
WeierstrassSigma⁡1.0,2.0,3.0
0.9880674335
See Also
EllipticF
EllipticK
EllipticPi
JacobiSN
Download Help Document