integral basis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


algcurves

  

integral_basis

  

compute integral bases of algebraic function fields

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

integral_basis(a)

integral_basis(a, x)

integral_basis(f, x, y, S)

Parameters

a

-

algebraic function or a set of algebraic functions

x

-

variable

y

-

variable

f

-

squarefree polynomial in x and y

S

-

(optional) set of irreducible polynomials in x

Description

• 

This procedure computes an integral basis over Lx for an algebraic function field Lxa, where L denotes the coefficient field. An integral basis is a basis of the Lx-module of functions which have no poles, except maybe at x=. There are several ways to specify the function field under consideration:

  

- by a RootOf a representing an algebraic function in the variable x. The polynomial defining the RootOf need not be irreducible but must be squarefree. If it is not irreducible, then a basis for the product of fields generated by the irreducible factors is computed.

  

- by a set a of RootOfs representing algebraic functions of x. In this case, the RootOfs must be independent.

  

- by a squarefree polynomial f over L in x and y. If f is irreducible, then an integral basis for the field generated by one of its roots is computed. If f is reducible, then an integral basis for the product of fields generated by the irreducible factors is computed.

• 

The coefficient field L can be the field of rational numbers, a field of rational functions over the rational numbers or any algebraic extension of those. An algebraic extension may be specified in radical or RootOf notation. If the RootOf notation is used, then the RootOfs must be independent.

• 

The output is a list of elements of the function field which generate (as Lx-module) the integral closure of Lx in the function field Lxa. If the input is a polynomial, then the output will expressed in terms of the variable y. If the input is a RootOf or a set of RootOfs, then these RootOfs will be used to represent the basis.

• 

If a contains no other variable than x, then the second argument x is not necessary. Note that in this case, L is an algebraic extension of the rational numbers.

• 

By setting infolevel[integral_basis] or infolevel[algcurves] to a positive value some information will be printed during the computation.

• 

The method used to compute an integral basis is based on Puiseux expansions, c.f. M. van Hoeij, "An algorithm for computing an integral basis in an algebraic function field", J. of Symbolic Computation, 1994, 18, p. 353-363. The functions parametrization, Weierstrassform and differentials in the algcurves package are based on integral_basis, because the integral basis contains the necessary information about the singularities in a for computer computations very convenient way.

• 

If the optional argument S is given then all factors of the discriminant that do not appear in S will be ignored in the algorithm. Then the output will be an integral basis over Lx_p for each polynomial p in S, (i.e. a local integral basis at p for each p in S).

Examples

withalgcurves:

αRootOfx3+7,x

αRootOf_Z3+7

(1)

fy8+3xy5α+5x4+x6α

fy8+RootOf_Z3+7x6+3RootOf_Z3+7xy5+5x4

(2)

integral_basisf,x,y

1,y,y2,y3x,y4x,y2y3+3xRootOf_Z3+7x2,y3y3+3xRootOf_Z3+7x2,y4y3+3xRootOf_Z3+7x3

(3)

gy42xy2+2212y2+x22212x+2+y6

gy42y2x+22y2+x222x+2+y6

(4)

integral_basisg,x,y

1,y,y2,y3,y2y2+1x2,yy4+y2x2y2+y2x+2x22

(5)

rRootOf_Z3+_Z2x4

rRootOfx4+_Z3+_Z2

(6)

integral_basisr

1,RootOfx4+_Z3+_Z2,RootOfx4+_Z3+_Z2RootOfx4+_Z3+_Z2+1x2

(7)

See Also

algcurves[puiseux]

NumberTheory[IntegralBasis]