algcurves
parametrization
find a parametrization for a curve with genus 0
Calling Sequence
Parameters
Description
Examples
parametrization(f, x, y, t)
f
-
irreducible polynomial in x and y, with genus 0
x, y, t
variables
This procedure computes, if it exists, a parametrization of an algebraic curve f. A parametrization is a birational equivalence from a projective line to the given curve f. Such a parametrization exists if and only if the genus is 0 and the curve is irreducible (which can be checked by AIrreduc).
The output of the procedure is a list X⁡t,Y⁡t of rational functions in t, such that X⁡t,Y⁡t is a point on the curve f for every value of t.
For a description of the method used see M. van Hoeij, "Rational Parametrizations of Algebraic Curves using a Canonical Divisor", 23, p. 209-227, JSC 1997.
with⁡algcurves:
f≔y5+2⁢x⁢y2+2⁢x⁢y3+x2⁢y−4⁢x3⁢y+2⁢x5:
v≔parametrization⁡f,x,y,t
v≔646272⁢t5+132192⁢t4+6120⁢t3−238⁢t2−17⁢t5430596⁢t5−103680⁢t4−17280⁢t3−1440⁢t2−60⁢t−1,−2594064⁢t5−98260⁢t4+9826⁢t35430596⁢t5−103680⁢t4−17280⁢t3−1440⁢t2−60⁢t−1
Now subs(t=any number,v) should be a point on the curve. Test the result (this should be 0):
normal⁡subs⁡x=v1,y=v2,f
0
parametrization⁡x4+y4+a⁢x2⁢y2+b⁢y3,x,y,t
−b⁢t3t4+a⁢t2+1,−t4⁢bt4+a⁢t2+1
See Also
AFactor
algcurves[genus]
algcurves[Weierstrassform]
Download Help Document