Deflection of a Beam with Distributed and Point Load
Introduction
This application will derive an explicit expression for the deflection of a beam with a distributed load and a point load.
Governing Equations
restart:
The Euler-Bernoulli equation
de≔EI⋅ⅆ4ⅆx4wx=qx:
Initial and boundary conditions
ibc≔w0=0,wL=0,D@@2w0=0,D@@2wL=0:
Distributed load and point load
q≔x→Q⋅1−Heavisidex−a+F⋅Diracx−b:
Solution of the Differential Equation
Solve the differential equation together with the initial/boundary conditions and the load distribution to get an explicit expression for the beam deflection.
deSol≔dsolvede,ibc,wx:deflection≔simplifyrhsdeSol,symbolic
deflection≔−Q⁢x⁢L−x⁢L+x⁢L−a4⁢Dirac⁡1,L−a+4⁢F⁢x⁢L−x⁢L+x⁢L−b3⁢Dirac⁡1,L−b−8⁢Q⁢x⁢L−x⁢L+x⁢L−a3⁢Dirac⁡L−a−6⁢Q⁢x⁢L−a2⁢L2+2⁢L⁢a−a2−2⁢x2⁢Heaviside⁡L−a+24⁢F⁢x⁢L−x⁢L+x⁢L−b2⁢Dirac⁡L−b+48⁢x⁢F⁢−x22+b⁢L−b2⁢L−b⁢Heaviside⁡L−b−6⁢L⁢Q⁢−x+a4⁢Heaviside⁡x−a−24⁢F⁢L⁢−x+b3⁢Heaviside⁡x−b−48⁢a2⁢Q⁢L⁢x−14⁢a2−12⁢x2⁢Heaviside⁡−a2+F⁢b⁢L⁢x−12⁢b2−12⁢x2⁢Heaviside⁡−b−Q⁢x⁢L⁢L2+L⁢x−x28⁢L−x144⁢EI⁢L
Derive the moment and shear distribution.
moment≔EI⋅diffdeflection,x,x
moment≔2⁢Q⁢x⁢L−a4⁢Dirac⁡1,L−a−2⁢Q⁢L−x⁢L−a4⁢Dirac⁡1,L−a−144⁢F⁢L⁢−x+b⁢Heaviside⁡x−b−24⁢F⁢L⁢−x+b3⁢Dirac⁡1,x−b+48⁢a2⁢Q⁢L−x⁢Heaviside⁡−a+96⁢F⁢b⁢L−x⁢Heaviside⁡−b−12⁢Q⁢L⁢L2+L⁢x−x2−12⁢Q⁢x⁢L⁢L−2⁢x+2⁢Q⁢L+x⁢L−a4⁢Dirac⁡1,L−a−8⁢F⁢L+x⁢L−b3⁢Dirac⁡1,L−b+16⁢Q⁢L+x⁢L−a3⁢Dirac⁡L−a+72⁢Q⁢L−a2⁢x⁢Heaviside⁡L−a−48⁢F⁢L+x⁢L−b2⁢Dirac⁡L−b−144⁢F⁢x⁢L−b⁢Heaviside⁡L−b+48⁢L⁢Q⁢−x+a3⁢Dirac⁡x−a−72⁢L⁢Q⁢−x+a2⁢Heaviside⁡x−a−6⁢L⁢Q⁢−x+a4⁢Dirac⁡1,x−a+144⁢F⁢L⁢−x+b2⁢Dirac⁡x−b−48⁢−Q⁢a2⁢Heaviside⁡−a2−F⁢b⁢Heaviside⁡−b−Q⁢L⁢L−2⁢x4+Q⁢x⁢L4⁢L−x+8⁢F⁢L−x⁢L−b3⁢Dirac⁡1,L−b−8⁢F⁢x⁢L−b3⁢Dirac⁡1,L−b−16⁢Q⁢L−x⁢L−a3⁢Dirac⁡L−a+16⁢Q⁢x⁢L−a3⁢Dirac⁡L−a+48⁢F⁢L−x⁢L−b2⁢Dirac⁡L−b−48⁢F⁢x⁢L−b2⁢Dirac⁡L−b144⁢L
shear≔diffmoment,x
shear≔−144⁢F⁢b⁢Heaviside⁡−b−72⁢Q⁢a2⁢Heaviside⁡−a+6⁢Q⁢L−a4⁢Dirac⁡1,L−a+144⁢F⁢L⁢Heaviside⁡x−b−36⁢Q⁢L⁢L−x−36⁢Q⁢L⁢L−2⁢x−24⁢F⁢L−b3⁢Dirac⁡1,L−b+48⁢Q⁢L−a3⁢Dirac⁡L−a+72⁢Q⁢L−a2⁢Heaviside⁡L−a−144⁢F⁢L−b2⁢Dirac⁡L−b−144⁢F⁢L−b⁢Heaviside⁡L−b+72⁢L⁢Q⁢−x+a3⁢Dirac⁡1,x−a−216⁢L⁢Q⁢−x+a2⁢Dirac⁡x−a+144⁢L⁢Q⁢−x+a⁢Heaviside⁡x−a−6⁢L⁢Q⁢−x+a4⁢Dirac⁡2,x−a−432⁢F⁢L⁢−x+b⁢Dirac⁡x−b−24⁢F⁢L⁢−x+b3⁢Dirac⁡2,x−b+216⁢F⁢L⁢−x+b2⁢Dirac⁡1,x−b+36⁢Q⁢x⁢L144⁢L
Plot the Deflection, Moment, and Shear
Assign parameters.
Q≔−12:F≔−10 :L≔20:a≔3:b≔5:EI≔10000:
Plot deflection, moment, and shear.
plotdeflection,x=0..L,size=1000,400,axesfont=Calibri,title=Deflection,labels=Distance along beam,Deflection,labeldirections=horizontal,vertical,labelfont=Calibri,titlefont=Calibri,16,bold,background=ColorTools:-ColorRGB,218/255,223/255,225/255,axis=gridlines=color=ColorTools:-ColorRGB,1,1,1
plotmoment,x=0..L,size=1000,400,axesfont=Calibri,title=Moment,labels=Distance along beam,Moment,labeldirections=horizontal,vertical,labelfont=Calibri,titlefont=Calibri,16,bold,background=ColorTools:-ColorRGB,218/255,223/255,225/255,axis=gridlines=color=ColorTools:-ColorRGB,1,1,1
Shear Distribution
plotshear,x=0..L,size=1000,400,axesfont=Calibri,title=Shear,labels=Distance along beam,Shear,labeldirections=horizontal,vertical,labelfont=Calibri,titlefont=Calibri,16,bold,background=ColorTools:-ColorRGB,218/255,223/255,225/255,axis=gridlines=color=ColorTools:-ColorRGB,1,1,1
Download Help Document