combinat
eulerian2
second order Eulerian numbers
Calling Sequence
Parameters
Description
Examples
References
eulerian2(n, k)
n, k
-
non-negative integers
The eulerian2(n, k) command counts the number of permutations pi1⁢pi2⁢...⁢pi2⁢n of the multi-set 1,1,2,2,...,n,n having two properties:
All numbers between the two occurrences of m are greater than m.
There are k ascents, namely, k places where pij<pij+1.
This function can be computed via the recurrence
eulerian2⁡n,k=k+1⁢eulerian2⁡n−1,k+2⁢n−k−1⁢eulerian2⁡n−1,k−1
Second-order Eulerian numbers are important because of their connection with Stirling numbers. For integers m and 0≤n we have:
Stirling2⁡m,m−n=∑k=0n⁡eulerian2⁡n,k⁢m+n−1−k2⁢n
Stirling1⁡m,m−n = −1n⁢Stirling1⁡m,m−n = ∑k=0n⁡eulerian2⁡n,k⁢m+k2⁢n
with⁡combinat:
Matrix⁡seq⁡seq⁡eulerian2⁡n,k,k=0..5,n=0..5
1000001000001200001860001225824001523284441200
R.L. Graham, D.E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, Mass., 1989.
See Also
binomial
combinat[eulerian1]
euler
Stirling1
Stirling2
Download Help Document