arctan - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


combine/arctan

combine arctangent terms

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

combine(f, arctan)

combine(f, arctan, m)

Parameters

f

-

any expression

m

-

the name 'symbolic'

Description

• 

The command combine(f, arctan) combines sums of arctangents in expressions by applying the following transformations:

arctanx+arctany=csgnx2+1xπ2x=1yarctanx+yxy+1xy<1orcsgnxcsgnyarctanx+yxy+1+csgnxπotherwise

  

If the input is a difference of two arctangents arctan(x) - arctan(y) then the above transformations are applied to arctan(x) + arctan(-y) .

• 

If the conditions required for the transformations cannot be determined by Maple, then the arctangents are not combined.  If the optional argument symbolic is specified, and the conditions cannot be determined, then transformation arctanx+arctany=arctanx+yxy+1 is applied regardless.

• 

Note, that in order to determine whether the transformations rules can be applied, one must be able to write an expression in the form

  

a+barctanc±arctand .

  

This is not always easy to do so the code may fail to combine arctangent terms because of this.

Examples

farctan1I+arctan12+12I

farctan1I+arctan12+I2

(1)

combinef&comma;arctan

π2

(2)

farctan13+arctan15+arctan17+arctan18

farctan13+arctan15+arctan17+arctan18

(3)

combinef&comma;arctan

π4

(4)

farctan13+arctan14

farctan13+arctan14

(5)

combinef&comma;arctan

arctan711

(6)

f3arctan132arctan14+arctan15

f3arctan132arctan14+arctan15

(7)

combinef&comma;arctan

arctan427536

(8)

faarctan13+aarctan14+barctan15

faarctan13+aarctan14+barctan15

(9)

combinef&comma;arctan

aarctan711+barctan15

(10)

combinearctanx+arctan1xassumingx::real

signumxπ2

(11)

farctanx+arctany&colon;

combinef

arctanx+arctany

(12)

combinef&comma;arctan&comma;symbolic

arctanx+yxy+1

(13)

assume0<x&comma;0<y&comma;1xy

f=combinef&comma;arctan

arctanx~+arctany~=arctanx~+y~x~y~+1+π

(14)

assumex<0&comma;0<y

f=combinef&comma;arctan

arctanx~+arctany~=arctanx~+y~x~y~+1

(15)

See Also

combine/trig