combine/ln
combine logarithmic terms
Calling Sequence
Parameters
Description
Examples
combine(f, ln)
combine(f, ln, t)
combine(f, ln, t, m)
f
-
any expression
t
type
m
the name 'symbolic'
In the case combine(f, ln), expressions involving sums of logarithms are combined by applying the following transformations:
a⁢ln⁡x→lnxa⁢provided⁢a⋅argument⁡x=argumentxa
ln⁡x+ln⁡y→ln⁡x⁢y⁢provided⁢argument⁡x⁢y=⁢argument⁡x+argument⁡y
ln⁡x−ln⁡y→ln⁡xy⁢provided⁢argument⁡xy=⁢argument⁡x−argument⁡y
where the coefficient a must be a rational constant and the argument of x and y must be in the region where this transformation is valid, unless 'symbolic' is specified.
In the case combine(f, ln, t), the first transformation is done if the coefficient a is of type t, and the third if the coefficient -1 is of type t. Often it is useful to restrict the transformation to be done only if a is an integer instead of a rational. Also, by specifying the type anything, the transformation is done in all valid cases, provided of course that the coefficient a itself is not a logarithm.
combine⁡3⁢ln⁡2−2⁢ln⁡3,ln
6⁢ln⁡2⁢3233
combine⁡a⁢ln⁡x+3⁢ln⁡x−ln⁡1−x+ln⁡1+x2,ln
a⁢ln⁡x+3⁢ln⁡x+ln⁡1+x−ln⁡1−x
assume⁡a,real;assume⁡0<x
a~⁢ln⁡x~−ln⁡1−x~x~3⁢1+x~
combine⁡a⁢ln⁡x+3⁢ln⁡x−ln⁡1−x+ln⁡1+x2,ln,integer
a~⁢ln⁡x~+ln⁡1+x~2−ln⁡1−x~x~3
combine⁡a⁢ln⁡x+3⁢ln⁡x−ln⁡1−x+ln⁡1+x2,ln,anything
−ln⁡1−x~x~a~⁢x~3⁢1+x~
additionally⁡x,RealRange⁡0,1
ln⁡x~a~⁢x~3⁢1+x~1−x~
combine⁡b⁢ln⁡y+3⁢ln⁡y−ln⁡1−y+ln⁡1+y2,ln,anything,symbolic
ln⁡yb⁢y3⁢1+y1−y
See Also
additionally
assume
combine
ln
Download Help Document