Change
Sudden or gradual cross sectional area change in pipe with contraction and enlargement
Description
Equations
Variables
Connections
Parameters
The Change component models sudden or gradual changes in the diameter of a pipe and captures both contraction and enlargement within the component.
The ratio of diameters is calculated as
β={dbdada>dbdadbotherwise
If da>db
Loss coefficient of contraction at inlet:
Kc={0.8⁢sin⁡θ2⁢1−β2β4θ≤45180⁢π0.5⁢1−β2⁢sin⁡θ2β4otherwise
Loss coefficient of enlargement at outlet:
Ke={2.6⁢sin⁡θ2⁢1−β22β4θ≤45180⁢π1−β22β4otherwise
otherwise, da≤db
Kc={0.8⁢sin⁡θ2⁢−β2+1θ≤45180⁢π0.5⁢−β2+1⁢sin⁡θ2otherwise
Ke={2.6⁢sin⁡θ2⁢−β2+12θ≤45180⁢π−β2+12otherwise
The total loss coefficient is defined by using the linear approximation for the transition between contraction and enlargement:
K={Kedp<−dptransitionKc−Ke2⁢dptransition⁢dp+Kc+Ke2,−dptransition≤dp≤dptransitionKcotherwise
p=pA−pB=π4⁢ρ⁢ν⁢q⁢16⁢q4π2⁢Acs2⁢ν4+ReCr414Cd2⁢Acs⁢π⁢Acs
q=qA=−qB
va=4⁢qda2⁢πvb=4⁢qdb2⁢π
References
[1] : Flow of Fluids Through Valves, Fittings, and Pipes, Crane Valves North America, Technical Paper No. 410M. 1979, p A-26
Name
Value
Units
Modelica ID
p
Pa
Pressure drop from A to B
q
m3s
Flow rate into port A
portA
Upstream hydraulic
portB
Downstream hydraulic port
General
Default
da
0.05
m
Diameter, port_a side
d_a
db
0.02
Diameter, port_b side
d_b
θ
π9
rad
Angle of Contraction/Enlargement
theta
ReCr
12
Reynolds number at critical flow
dptransition
10
Pressure difference for transition zone dp<dptransition
p_transition
Fluid Parameters
The following parameters, used in the equations, are properties of the Hydraulic System Properties component used in the model.
ν
m2s
Kinematic viscosity of fluid
nu
ρ
kgm3
Density of fluid
rho
El
Bulk modulus of fluid
See Also
Hydraulics Library
Restrictions
Download Help Document